NIRS prediction of the protein, fat, and ash of Sargassum fusiforme at different growth stages: A quality control approach

马尾藻 质量(理念) 生物 植物 藻类 物理 量子力学
作者
Jing Huang,Li Zeng,Sisi Wei,Haibin Tong,Xiaoliang Ji,Mingjiang Wu,Yue Yang
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:: 105211-105211
标识
DOI:10.1016/j.infrared.2024.105211
摘要

Seaweed is a sustainable source of nutrients for human consumption, and a rapid and accurate quality control approach is essential for ensuring the nutritional value and health benefits of seaweed. The nutritional constituents and quality of seaweed vary significantly along with their growth stages. The present study developed a quality control approach for seaweed Sargassum fusiforme, rapid and convenient, using near-infrared spectroscopy (NIRS) and chemometrics to predict protein, fat, and ash in S. fusiforme at different growth stages. Partial least squares (PLS) regression was utilized to construct the quantitative relationship between NIR spectral data and nutritional components. Moreover, three wavelength selection algorithms, namely, competitive adaptive reweighted sampling (CARS), genetic algorithm, backward interval (BI) and synergy interval, were implemented to optimize the PLS models and improve prediction accuracy. Results demonstrated that the CARS-PLS model exhibited superior performance with a root mean square error of prediction and a coefficient of determination of prediction of 0.1075 % and 0.9936 for protein, 0.1807 % and 0.7706 for fat, and 0.3315 % and 0.9937 for ash, respectively. The effects of different developmental stages on the nutritional quality of S. fusiforme were also investigated. The seedling and early growth stages were the preferable harvest times for preparing high-protein foods and health supplements. The overall results confirmed the strong applicability of NIRS as a rapid and accurate method for measuring the protein, fat, and ash contents of S. fusiforme. This work also recommended that S. fusiforme quality can be controlled in a more precise and refined manner on the basis of a customer-oriented strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助加油采纳,获得10
1秒前
zyf完成签到,获得积分10
2秒前
沉默芸发布了新的文献求助10
3秒前
科研通AI5应助菜籽采纳,获得10
4秒前
4秒前
稳赚赚完成签到,获得积分10
4秒前
5秒前
6秒前
Akim应助汤飞柏采纳,获得10
6秒前
可靠豌豆发布了新的文献求助10
7秒前
大个应助爱听歌笑寒采纳,获得10
7秒前
8秒前
9秒前
orixero应助刀客特幽采纳,获得10
11秒前
加油发布了新的文献求助10
12秒前
SpONGeBOb完成签到 ,获得积分10
12秒前
12秒前
wilson完成签到,获得积分10
12秒前
ZUOWEI发布了新的文献求助10
12秒前
兮兮兮发布了新的文献求助10
12秒前
传奇3应助薄红采纳,获得10
13秒前
华仔应助天空没有极限采纳,获得10
14秒前
阔达斑马应助神勇乐安采纳,获得30
14秒前
16秒前
16秒前
个性的紫菜应助DAN_采纳,获得10
16秒前
汤飞柏发布了新的文献求助10
19秒前
wanci应助liquor采纳,获得10
20秒前
武似星飞完成签到,获得积分10
20秒前
kytsg完成签到 ,获得积分10
24秒前
26秒前
彩色菲鹰完成签到,获得积分10
27秒前
29秒前
qiao应助小林采纳,获得10
29秒前
科研通AI5应助DAN_采纳,获得10
29秒前
清澄完成签到,获得积分10
31秒前
bkagyin应助123采纳,获得10
33秒前
35秒前
彭于晏应助戴帽子的噗噗采纳,获得10
35秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781625
求助须知:如何正确求助?哪些是违规求助? 3327197
关于积分的说明 10230039
捐赠科研通 3042069
什么是DOI,文献DOI怎么找? 1669783
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774