Distill-SODA: Distilling Self-Supervised Vision Transformer for Source-Free Open-Set Domain Adaptation in Computational Pathology

计算机科学 人工智能 集合(抽象数据类型) 机器学习 开放集 嵌入 闭集 模式识别(心理学) 数学 离散数学 程序设计语言
作者
Guillaume Vray,Devavrat Tomar,Behzad Bozorgtabar,Jean‐Philippe Thiran
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 2021-2032 被引量:2
标识
DOI:10.1109/tmi.2024.3355645
摘要

Developing computational pathology models is essential for reducing manual tissue typing from whole slide images, transferring knowledge from the source domain to an unlabeled, shifted target domain, and identifying unseen categories. We propose a practical setting by addressing the above-mentioned challenges in one fell swoop, i.e., source-free open-set domain adaptation. Our methodology focuses on adapting a pre-trained source model to an unlabeled target dataset and encompasses both closed-set and open-set classes. Beyond addressing the semantic shift of unknown classes, our framework also deals with a covariate shift, which manifests as variations in color appearance between source and target tissue samples. Our method hinges on distilling knowledge from a self-supervised vision transformer (ViT), drawing guidance from either robustly pre-trained transformer models or histopathology datasets, including those from the target domain. In pursuit of this, we introduce a novel style-based adversarial data augmentation, serving as hard positives for self-training a ViT, resulting in highly contextualized embeddings. Following this, we cluster semantically akin target images, with the source model offering weak pseudo-labels, albeit with uncertain confidence. To enhance this process, we present the closed-set affinity score (CSAS), aiming to correct the confidence levels of these pseudo-labels and to calculate weighted class prototypes within the contextualized embedding space. Our approach establishes itself as state-of-the-art across three public histopathological datasets for colorectal cancer assessment. Notably, our self-training method seamlessly integrates with open-set detection methods, resulting in enhanced performance in both closed-set and open-set recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助飘逸萍采纳,获得10
刚刚
优雅枫叶发布了新的文献求助10
2秒前
Syyyy完成签到,获得积分10
2秒前
领导范儿应助无人深空采纳,获得10
3秒前
程平完成签到,获得积分20
3秒前
YY发布了新的文献求助10
3秒前
3秒前
善学以致用应助小鹿采纳,获得10
3秒前
科研通AI6应助自觉紫安采纳,获得10
4秒前
Orange应助称心誉采纳,获得10
4秒前
cmr发布了新的文献求助10
5秒前
顾矜应助lawang采纳,获得10
6秒前
赘婿应助lawang采纳,获得10
6秒前
彭于晏应助lawang采纳,获得10
6秒前
情怀应助lawang采纳,获得10
6秒前
传奇3应助lawang采纳,获得10
6秒前
7秒前
7秒前
7秒前
9秒前
深情安青应助韶韶i采纳,获得10
9秒前
10秒前
崔晴晴完成签到,获得积分20
10秒前
10秒前
斯文丹彤完成签到,获得积分20
10秒前
隐形曼青应助魔幻蓉采纳,获得10
11秒前
阅遍SCI完成签到,获得积分10
12秒前
14秒前
田田田完成签到,获得积分10
14秒前
赵博完成签到,获得积分10
15秒前
我是老大应助ylt采纳,获得10
15秒前
汉堡包应助今天炒鱿鱼采纳,获得30
15秒前
Akim应助董科研严采纳,获得10
15秒前
15秒前
16秒前
orixero应助明理小凝采纳,获得10
16秒前
16秒前
spark发布了新的文献求助10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662345
求助须知:如何正确求助?哪些是违规求助? 4842231
关于积分的说明 15099514
捐赠科研通 4820844
什么是DOI,文献DOI怎么找? 2580317
邀请新用户注册赠送积分活动 1534341
关于科研通互助平台的介绍 1492985