电磁屏蔽
材料科学
电磁干扰
反射(计算机编程)
电磁干扰
光电子学
铁磁共振
吸收(声学)
共振(粒子物理)
电信
复合材料
物理
磁化
工程类
计算机科学
磁场
原子物理学
程序设计语言
量子力学
作者
Horim Lee,Seung Han Ryu,Suk Jin Kwon,Jae Ryung Choi,Sang‐Bok Lee,Byeongjin Park
出处
期刊:Nano-micro Letters
[Springer Science+Business Media]
日期:2023-03-28
卷期号:15 (1)
被引量:44
标识
DOI:10.1007/s40820-023-01058-w
摘要
Although there is a high demand for absorption-dominant electromagnetic interference (EMI) shielding materials for 5G millimeter-wave (mmWave) frequencies, most current shielding materials are based on reflection-dominant conductive materials. While there are few absorption-dominant shielding materials proposed with magnetic materials, their working frequencies are usually limited to under 30 GHz. In this study, a novel multi-band absorption-dominant EMI shielding film with M-type strontium ferrites and a conductive grid is proposed. This film shows ultralow EMI reflection of less than 5% in multiple mmWave frequency bands with sub-millimeter thicknesses, while shielding more than 99.9% of EMI. The ultralow reflection frequency bands are controllable by tuning the ferromagnetic resonance frequency of M-type strontium ferrites and composite layer geometries. Two examples of shielding films with ultralow reflection frequencies, one for 39 and 52 GHz 5G telecommunication bands and the other for 60 and 77 GHz autonomous radar bands, are presented. The remarkably low reflectance and thinness of the proposed films provide an important advancement toward the commercialization of EMI shielding materials for 5G mmWave applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI