Deep Learning With an Attention Mechanism for Differentiating the Origin of Brain Metastasis Using MR images

医学 肺癌 脑转移 接收机工作特性 癌症 流体衰减反转恢复 乳腺癌 磁共振成像 转移 人口 放射科 肿瘤科 内科学 核医学 环境卫生
作者
Tianyu Jiao,Fuyan Li,Yi Cui,Xiao Wang,Butuo Li,Feng Shi,Yuwei Xia,Qing Zhou,Qingshi Zeng
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (5): 1624-1635 被引量:15
标识
DOI:10.1002/jmri.28695
摘要

Background Brain metastasis (BM) is a serious neurological complication of cancer of different origins. The value of deep learning (DL) to identify multiple types of primary origins remains unclear. Purpose To distinguish primary site of BM and identify the best DL models. Study Type Retrospective. Population A total of 449 BM derived from 214 patients (49.5% for female, mean age 58 years) (100 from small cell lung cancer [SCLC], 125 from non‐small cell lung cancer [NSCLC], 116 from breast cancer [BC], and 108 from gastrointestinal cancer [GIC]) were included. Field Strength/Sequence A 3‐T, T1 turbo spin echo (T1‐TSE), T2‐TSE, T2FLAIR‐TSE, DWI echo‐planar imaging (DWI‐EPI) and contrast‐enhanced T1‐TSE (CE T1‐TSE). Assessment Lesions were divided into training ( n = 285, 153 patients), testing ( n = 122, 93 patients), and independent testing cohorts ( n = 42, 34 patients). Three‐dimensional residual network (3D‐ResNet), named 3D ResNet6 and 3D ResNet 18, was proposed for identifying the four origins based on single MRI and combined MRI (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI, CE‐T1WI + T2WI + DWI). DL model was used to distinguish lung cancer from non‐lung cancer; then SCLC vs . NSCLC for lung cancer classification and BC vs. GIC for non‐lung cancer classification was performed. A subjective visual analysis was implemented and compared with DL models. Gradient‐weighted class activation mapping (Grad‐CAM) was used to visualize the model by heatmaps. Statistical Tests The area under the receiver operating characteristics curve (AUC) assess each classification performance. Results 3D ResNet18 with Grad‐CAM and AIC showed better performance than 3DResNet6, 3DResNet18 and the radiologist for distinguishing lung cancer from non‐lung cancer, SCLC from NSCLC, and BC from GIC. For single MRI sequence, T1WI, DWI, and CE‐T1WI performed best for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC, and BC vs. GIC classifications. The AUC ranged from 0.675 to 0.876 and from 0.684 to 0.800 regarding the testing and independent testing datasets, respectively. For combined MRI sequences, the combination of CE‐T1WI + T2WI + DWI performed better for BC vs. GIC (AUCs of 0.788 and 0.848 on testing and independent testing datasets, respectively), while the combined MRI approach (T1WI + T2‐FLAIR + DWI, CE‐T1WI + DWI) could not achieve higher AUCs for lung cancer vs. non‐lung cancer, SCLC vs. NSCLC. Grad‐CAM helped for model visualization by heatmaps that focused on tumor regions. Data Conclusion DL models may help to distinguish the origins of BM based on MRI data. Evidence Level 3 Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KD发布了新的文献求助10
刚刚
深情安青应助呆呆的杏仁采纳,获得10
刚刚
浑灵安发布了新的文献求助10
1秒前
1秒前
hinatazaka46完成签到,获得积分10
2秒前
4秒前
walawala应助科研打工人采纳,获得10
5秒前
落后志泽完成签到,获得积分10
5秒前
5秒前
5秒前
踏实的绿柏完成签到,获得积分10
6秒前
潇洒如之发布了新的文献求助10
6秒前
luohan完成签到,获得积分10
6秒前
天天快乐应助小柚子采纳,获得10
7秒前
SYLH应助venihall采纳,获得30
7秒前
8秒前
8秒前
打打应助小黄人.鲍勃采纳,获得10
8秒前
竹焚完成签到 ,获得积分10
8秒前
Timothy发布了新的文献求助10
9秒前
yiyi完成签到,获得积分20
9秒前
brisk发布了新的文献求助10
9秒前
心灵美的毛巾完成签到,获得积分20
11秒前
12秒前
典雅雁梅完成签到 ,获得积分10
13秒前
14秒前
14秒前
鹿烔烔发布了新的文献求助20
15秒前
MiffyJia发布了新的文献求助30
17秒前
17秒前
18秒前
GLORIA发布了新的文献求助10
18秒前
祥辉NCU完成签到,获得积分10
18秒前
19秒前
hxh发布了新的文献求助10
19秒前
19秒前
wym发布了新的文献求助10
19秒前
Timothy完成签到,获得积分10
19秒前
科研通AI5应助小黄人.鲍勃采纳,获得30
20秒前
大个应助麻辣牛肉采纳,获得10
20秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829742
求助须知:如何正确求助?哪些是违规求助? 3372344
关于积分的说明 10471722
捐赠科研通 3091916
什么是DOI,文献DOI怎么找? 1701558
邀请新用户注册赠送积分活动 818462
科研通“疑难数据库(出版商)”最低求助积分说明 770891