Low-Dimensional Space Modeling-Based Differential Evolution for Large-Scale Global Optimization Problems

差异进化 维数之咒 计算机科学 数学优化 人工智能 降维 元启发式 全局优化 算法 数学
作者
Thiago Henrique Lemos Fonseca,Sílvia Modesto Nassar,Alexandre César Muniz de Oliveira,Bruno Agard
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 1529-1543 被引量:4
标识
DOI:10.1109/tevc.2022.3227440
摘要

Large-Scale Global Optimization (LSGO) has been an active research field.Part of this interest is supported by its application to cutting-edge research such as Deep Learning, Big Data, and complex real-world problems such as image encryption, real-time traffic management, and more.However, the high dimensionality makes solving LSGO a significant challenge.Some recent research deal with the high dimensionality by mapping the optimization process to a reduced alternative space.Nonetheless, these works suffer from the changes in the search space topology and the loss of information caused by the dimensionality reduction.This paper proposes a hybrid metaheuristic, so-called LSMDE (Low-dimensional Space Modeling-based Differential Evolution), that uses the Singular Value Decomposition to build a low-dimensional search space from the features of candidate solutions generated by a new SHADE-based algorithm (GM-SHADE).GM-SHADE combines a Gaussian Mixture Model (GMM) and two specialized local algorithms: MTS-LS1 and L-BFGS-B, to promote a better exploration of the reduced search space.GMM mitigates the loss of information in mapping high-dimensional individuals to low-dimensional individuals.Furthermore, the proposal does not require prior knowledge of the search space topology, which makes it more flexible and adaptable to different LSGO problems.The results indicate that LSMDE is the most efficient method to deal with partially separable functions compared to other state-of-the-art algorithms and has the best overall performance in two of the three proposed experiments.Experimental results also show that the new approach achieves competitive results for non-separable and overlapping functions on the most recent test suite for LSGO problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盒子先生完成签到,获得积分10
刚刚
刚刚
ccccccc发布了新的文献求助10
刚刚
LYSnow7完成签到 ,获得积分10
1秒前
YH完成签到,获得积分10
1秒前
2秒前
David完成签到 ,获得积分10
2秒前
刘帅帅完成签到,获得积分10
3秒前
王小茗完成签到,获得积分10
3秒前
思源应助wt9189999采纳,获得10
3秒前
3秒前
kaola完成签到,获得积分10
4秒前
今后应助过儿采纳,获得10
4秒前
科研通AI2S应助spy采纳,获得10
4秒前
cdragon完成签到,获得积分10
5秒前
滴滴哒哒完成签到 ,获得积分10
5秒前
dududuudu应助hhh采纳,获得10
5秒前
6秒前
机灵迎海完成签到,获得积分10
6秒前
7秒前
kin完成签到 ,获得积分10
7秒前
CDN完成签到,获得积分20
7秒前
虚幻谷秋完成签到,获得积分10
8秒前
刻苦的煎蛋完成签到,获得积分10
8秒前
昏睡的蟠桃应助沉静胜采纳,获得150
9秒前
9秒前
摆烂小子完成签到,获得积分10
9秒前
高兴的海亦完成签到,获得积分10
10秒前
无花果应助langkanpu采纳,获得10
10秒前
11秒前
专注完成签到,获得积分10
11秒前
zz完成签到,获得积分10
11秒前
my196755完成签到,获得积分10
12秒前
九月完成签到,获得积分10
12秒前
星辰迷殇发布了新的文献求助10
12秒前
13秒前
shi0331完成签到,获得积分10
14秒前
14秒前
wt9189999完成签到,获得积分10
14秒前
李琛完成签到,获得积分10
14秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788571
求助须知:如何正确求助?哪些是违规求助? 3333821
关于积分的说明 10264588
捐赠科研通 3049861
什么是DOI,文献DOI怎么找? 1673719
邀请新用户注册赠送积分活动 802186
科研通“疑难数据库(出版商)”最低求助积分说明 760549