<i>Early Warning System for Open-beaked Ratio, Spatial dispersion, and Movement of Chicken Using CNNs</i>

空间色散 计算机科学 人工智能 运动(音乐) 卷积神经网络 羊群 计算机视觉 生物 物理 生态学 光学 声学
作者
Bolin Chen,Yan‐Fu Kuo
标识
DOI:10.13031/aim.202301235
摘要

Abstract. Chicken is a major source of dietary protein worldwide. To meet the growing demand for chicken meat, chickens are usually raised using intensive farming approach, in which thousands of chickens are housed together. To ensure chicken production, it is essential to monitor the chickens. Typical monitoring indicators include open beak (OB) behavior, spatial dispersion, and movement of chickens. Conventionally, chicken monitoring was achieved in routinely patrol. However, manually monitoring a large flock of chickens is time-consuming and may not detect adverse events in real-time. Thus, this study proposes to monitor OB behavior, spatial dispersion, and movement of chickens on commercial farms using convolutional neural networks (CNNs). Embedded systems that comprise cameras were developed and installed on pillars and roof beams to acquire side-view and top-view videos, respectively, of chickens. The acquired videos were transmitted to a cloud server through 4G network and were converted into images. A You Only Look Once—version 7 tiny (YOLO v7-tiny), referred to as side-view YOLO v7-tiny, was trained to observe OB behaviors of chickens in the side-view images. Another YOLO v7-tiny, referred to as top-view YOLO v7-tiny, was trained to localize chickens in the top-view images. Spatial dispersion and movement of chickens were subsequently quantified using nearest neighbor algorithm and Bytetrack algorithm, respectively. The side-view YOLO v7-tiny model achieved an average precision of 91.3% in detecting chickens with OB behaviors. The top-view YOLO v7-tiny model achieved an average precision of 95.8% in localizing chickens. This research can provide an assistance for chicken farmers to more efficiently manage their farms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZQ完成签到 ,获得积分20
1秒前
1秒前
赘婿应助汎影采纳,获得10
2秒前
2秒前
汉堡包应助瀚泛采纳,获得10
2秒前
2秒前
niuniuniu完成签到,获得积分10
2秒前
3秒前
reny完成签到,获得积分10
5秒前
春春完成签到,获得积分10
6秒前
乌梅不乌完成签到,获得积分10
6秒前
Genius发布了新的文献求助10
7秒前
7秒前
LLLLLL发布了新的文献求助10
7秒前
leo发布了新的文献求助10
9秒前
小马甲应助一_采纳,获得10
9秒前
闾丘道天完成签到,获得积分10
9秒前
W-w完成签到,获得积分10
9秒前
11秒前
zzx2024发布了新的文献求助10
11秒前
月月发布了新的文献求助10
11秒前
这瓜不卖发布了新的文献求助10
11秒前
LYing完成签到 ,获得积分10
12秒前
上官若男应助研友_Z729Mn采纳,获得20
12秒前
Gyrfalcon完成签到 ,获得积分10
12秒前
12秒前
科研通AI5应助清浅时光采纳,获得10
13秒前
13秒前
wwj发布了新的文献求助10
14秒前
Jasper应助dd采纳,获得10
14秒前
冬虫草发布了新的文献求助10
15秒前
雨雨呀嘿完成签到,获得积分10
15秒前
身法马可波罗完成签到 ,获得积分10
15秒前
FashionBoy应助等到雨停采纳,获得10
16秒前
AlexLam发布了新的文献求助10
16秒前
wanci应助汎影采纳,获得10
17秒前
不辞完成签到,获得积分10
18秒前
19秒前
19秒前
cmq完成签到,获得积分10
19秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823348
求助须知:如何正确求助?哪些是违规求助? 3365778
关于积分的说明 10437415
捐赠科研通 3084906
什么是DOI,文献DOI怎么找? 1697037
邀请新用户注册赠送积分活动 816181
科研通“疑难数据库(出版商)”最低求助积分说明 769437