An end-to-end lightweight model for grape and picking point simultaneous detection

最小边界框 稳健性(进化) 跳跃式监视 瓶颈 计算机科学 人工智能 点(几何) 目标检测 终点 像素 计算机视觉 模式识别(心理学) 图像(数学) 数学 实时计算 基因 嵌入式系统 生物化学 化学 几何学
作者
Ruzhun Zhao,Yuchang Zhu,Yuanhong Li
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:223: 174-188 被引量:36
标识
DOI:10.1016/j.biosystemseng.2022.08.013
摘要

Grape clusters and their picking point detection (GCPPD) are pivotal in the visual tasks of automatic grape harvesting. In recent years, much progress has been made in increasing the accuracy of GCPPD based on deep learning models. However, GCPPD still has many problems. First, it is inevitable that grape cluster detection requires complex models with many parameters. Second, the prior work on picking point detection can be summarised as the image processing methods using predefined hand-crafted features. This leads to a lack of robustness in the proposed algorithms. To address this, a scheme for the simultaneous detection of grape clusters and their picking points is explored. Due to the superiority of simultaneous detection, the model is constructed as an end-to-end network. Thus, a lightweight end-to-end model called YOLO-GP (YOLO-Grape and Picking points) is proposed. Specifically, YOLO-GP utilises a ghost bottleneck to reduce model parameters. Additionally, this model adds the prediction of picking points using the novel idea, that the picking point follows the bounding box. The Grape-PP (Grape-Picking Point) dataset for model training is constructed, which contains 360 grape images with 4517 grape cluster bounding boxes and picking points. The experiments show that the mean Average Precision (mAP) of grape cluster detection by YOLO-GP is 93.27% with a decrease in the number of weight parameters by at least 10%. The distance error of picking point detection is less than 40 pixels. In summary, YOLO-GP achieves the simultaneous detection of grape clusters and their picking points, and its performance is comparable to that of baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的月亮完成签到,获得积分10
刚刚
刚刚
彭于晏应助田小姐采纳,获得10
1秒前
Mii发布了新的文献求助30
1秒前
天下无敌丑娃娃完成签到,获得积分10
1秒前
2秒前
轻松的人龙完成签到,获得积分20
2秒前
痴情的雁易完成签到,获得积分10
2秒前
cdercder应助风中的丝袜采纳,获得10
2秒前
cdercder应助风中的丝袜采纳,获得10
2秒前
2秒前
cdercder应助风中的丝袜采纳,获得10
2秒前
cdercder应助风中的丝袜采纳,获得10
2秒前
wanci应助风中的丝袜采纳,获得10
2秒前
爱喝水发布了新的文献求助10
2秒前
3秒前
粗暴的无春完成签到,获得积分10
3秒前
lyq发布了新的文献求助10
4秒前
重要小懒虫应助HXX采纳,获得10
5秒前
ding应助saaa采纳,获得10
6秒前
6秒前
七七完成签到,获得积分10
6秒前
爱笑的野狼完成签到,获得积分10
7秒前
优秀的枫发布了新的文献求助10
7秒前
8秒前
Janvenns完成签到,获得积分10
8秒前
桃桃完成签到,获得积分10
8秒前
yqcsyyds完成签到 ,获得积分10
9秒前
9秒前
直率斓完成签到,获得积分10
10秒前
Dragon完成签到,获得积分10
12秒前
英姑应助LUNWENREQUEST采纳,获得10
12秒前
12秒前
学术垃圾完成签到,获得积分10
12秒前
wyh3218完成签到 ,获得积分10
12秒前
科研通AI5应助儒雅的秋珊采纳,获得10
12秒前
12秒前
bzc229完成签到,获得积分10
12秒前
QIQI发布了新的文献求助30
12秒前
xwl完成签到,获得积分10
13秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820460
求助须知:如何正确求助?哪些是违规求助? 3363453
关于积分的说明 10422477
捐赠科研通 3081797
什么是DOI,文献DOI怎么找? 1695232
邀请新用户注册赠送积分活动 814983
科研通“疑难数据库(出版商)”最低求助积分说明 768791