Generative AI for the Design of Molecules: Advances and Challenges

作者
Yan Sun,Lianghong Chen,Zihao Jing,Yan-yi Li,Dongkyu Kim,Jing-Yan Gao,Reza Noroozi,Grace Y. Yi,Conrard Giresse Tetsassi Feugmo,Anna Klinkova,Kyla Sask,Agustinus Kristiadi,Boyu Wang,Elizabeth R. Gillies,Kun Ping Lu,HaoTian Harvey Shi,Pingzhao Hu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c02234
摘要

The design of novel molecules underpins advances in both drug discovery and biomaterials engineering. Traditional approaches, from natural product isolation to high-throughput screening, have delivered important therapeutics but remain costly, inefficient, and limited in exploring the chemical and biomolecular space. While predictive machine learning models improved aspects of discovery, they cannot fully address the complexity of modern precision medicine. Generative artificial intelligence (AI) offers a paradigm shift by enabling de novo molecular creation guided by data-driven optimization. Architectures such as variational autoencoders, generative adversarial networks, normalizing flows, and diffusion models now demonstrate unprecedented capabilities in designing small molecules and macromolecules that satisfy complex physicochemical and biological requirements. This review surveys the rapidly evolving field of generative AI for molecular design. We first introduce the development of generative architectures and optimization strategies, focusing on how sampling, training, and postgeneration techniques improve control over molecular design. We then examine applications across molecular representations, unconstrained and property-constrained design, conformation modeling, and the generation of large biomolecules such as proteins, antibodies, and peptides. Benchmarking datasets, evaluation metrics, and real-world case studies, such as the AI-driven discovery of novel antibiotics demonstrated in vivo efficacy against multidrug-resistant infections, illustrate the growing maturity and translational potential of generative molecular design approaches. Despite rapid advances, generative molecular design still faces critical challenges that point to key future directions. These include integrating physicochemical priors through differentiable physical models, overcoming data scarcity via synthetic augmentation and transfer learning, enabling multimodal fusion of structural, omics, and phenotypic data, deploying autonomous AI agents for adaptive decision-making, and optimizing multiple objectives with uncertainty-aware strategies. Addressing these challenges could lead to more robust, generalizable, and experimentally aligned molecular design systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
麦热穆罕完成签到,获得积分10
2秒前
小马甲应助adheret采纳,获得10
2秒前
红与黑发布了新的文献求助10
2秒前
李顺杰发布了新的文献求助10
3秒前
爆米花应助无心采纳,获得10
3秒前
呆瓜不是瓜完成签到,获得积分10
3秒前
耍酷的花卷完成签到 ,获得积分10
3秒前
安详的语蕊完成签到,获得积分10
4秒前
郭松林发布了新的文献求助10
5秒前
5秒前
OMIT发布了新的文献求助10
6秒前
6秒前
赵123完成签到,获得积分10
6秒前
自由元冬发布了新的文献求助10
7秒前
7秒前
王易云发布了新的文献求助10
7秒前
8秒前
愤怒的翅膀完成签到,获得积分10
9秒前
安静夏天发布了新的文献求助10
9秒前
彭于晏应助张仕俊采纳,获得10
10秒前
SpONGeBOb完成签到 ,获得积分10
10秒前
10秒前
YTTT发布了新的文献求助10
11秒前
12秒前
XNDDY完成签到,获得积分10
13秒前
Firo发布了新的文献求助10
13秒前
leo发布了新的文献求助10
14秒前
14秒前
SciGPT应助安静夏天采纳,获得10
14秒前
Akim应助千殇采纳,获得10
14秒前
15秒前
欢呼书包完成签到,获得积分20
15秒前
顾矜应助比奇堡采纳,获得10
16秒前
16秒前
16秒前
17秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344166
求助须知:如何正确求助?哪些是违规求助? 4479497
关于积分的说明 13943155
捐赠科研通 4376560
什么是DOI,文献DOI怎么找? 2404847
邀请新用户注册赠送积分活动 1397207
关于科研通互助平台的介绍 1369579