Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations

方向错误 材料科学 位错 纳米柱 凝聚态物理 晶界 结晶学 皮尔斯应力 位错蠕变 复合材料 微观结构 纳米技术 纳米结构 物理 化学
作者
Xu Zhang,Songjiang Lu,Bo Zhang,Xiaobao Tian,Qianhua Kan,Guozheng Kang
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:202: 88-98 被引量:73
标识
DOI:10.1016/j.actamat.2020.10.052
摘要

Grain boundaries (GBs) have a significant influence on the mechanical properties of metallic materials. It has been a great challenge to describe dislocation interactions with various GBs. In the present article, a generalized dislocation–GB interaction model was constructed and then implemented in the three-dimensional multiscale discrete dislocation dynamics (DDD) framework. In the model, two dislocation–GB interaction mechanisms, i.e., dislocation absorption at GBs and dislocation emission from GBs, were considered. In order to make the dislocation–GB interaction model suitable for various GB types, a ‘coarse-graining’ approach was applied to deal with the process of dislocation absorption and emission. As the validations and applications of the proposed dislocation–GB interaction model, nanopillars containing a non-sigma large-angle GB and subjected to uniaxial compression were studied. The simulated results show that the bi-crystalline nanopillars possess a higher yield strength and flow stress, smaller stress-drop size than single-crystalline counterparts, which is consistent with earlier experimental observations in the literature. Afterward, the DDD simulation was employed to reveal the effect of GB misorientation on the mechanical responses of bicrystals with a large-angle-symmetric-tilt GB. Simulations indicate that the mechanical responses of bicrystals are affected by the GB structures and complex dislocation–dislocation and dislocation–GB interactions. In contrast, the dislocation absorption and emission events, as well as the evolution of resolved shear stress and dislocation density, do not depend on the GB misorientation angles or the GB strength (or the GB energy).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文的小旋风应助Seyon采纳,获得10
刚刚
和谐煜祺完成签到,获得积分10
2秒前
2秒前
popo完成签到,获得积分10
3秒前
潇洒冷菱发布了新的文献求助10
3秒前
clyhg完成签到,获得积分10
4秒前
zh完成签到,获得积分10
5秒前
5秒前
lilei完成签到 ,获得积分10
6秒前
老实芭蕉完成签到,获得积分10
6秒前
7秒前
trouble虫虫发布了新的文献求助10
7秒前
8秒前
Y123完成签到,获得积分10
8秒前
8秒前
8秒前
搜集达人应助相忘于江湖采纳,获得20
8秒前
9秒前
范婷婷发布了新的文献求助10
10秒前
10秒前
易川完成签到,获得积分10
10秒前
key发布了新的文献求助10
11秒前
11秒前
头头发布了新的文献求助10
12秒前
852应助全焱采纳,获得10
12秒前
HailongYang发布了新的文献求助10
13秒前
乘风破浪发布了新的文献求助10
13秒前
15秒前
ErinRRR发布了新的文献求助10
15秒前
穿多点完成签到,获得积分10
16秒前
在水一方应助pkaq采纳,获得30
16秒前
盛欢发布了新的文献求助10
16秒前
17秒前
许甜甜鸭应助风清扬采纳,获得10
17秒前
Dandelion完成签到,获得积分20
17秒前
烂漫香水完成签到 ,获得积分10
17秒前
17秒前
心空完成签到,获得积分10
17秒前
李爱国应助桃桃杨乐多采纳,获得10
18秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Bachelor’s thesis writing as an emotional process 200
Resonance: A Sociology of Our Relationship to the World 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828331
求助须知:如何正确求助?哪些是违规求助? 3370707
关于积分的说明 10464368
捐赠科研通 3090551
什么是DOI,文献DOI怎么找? 1700464
邀请新用户注册赠送积分活动 817842
科研通“疑难数据库(出版商)”最低求助积分说明 770538