Paired Analyses of AML at Diagnosis and Relapse By Single-Cell RNA Sequencing Identifies Two Distinct Relapse Patterns

生物 基因 白血病 表观遗传学 基因表达谱 癌症研究 基因表达 遗传学
作者
Kai Wu,Qianyi Ma,Darren King,Jun Li,Sami N. Malek
出处
期刊:Blood [Elsevier BV]
卷期号:134 (Supplement_1): 183-183
标识
DOI:10.1182/blood-2019-124170
摘要

Introduction: Despite achievement of complete remission (CR) following chemotherapy, Acute Myelogenous Leukemia (AML) relapses in the majority of adult patients. While relapsed AML is almost always clonally related to the disease at diagnosis, the actual molecular and cellular contributors to chemotherapy resistance and to AML relapse remain incompletely understood. Some molecular determinants of relapse have been identified in genomic, epigenetic and proteomic aberrations, while cellular relapse reservoirs have been identified in leukemia stem cells as well as in more mature leukemic cell compartments. Here, we set out to determine the cellular composition, gene mutation status and gene expression of paired AML specimens procured at diagnosis and at relapse aiming at a better understanding of the AML relapse process. Methods: We employed the drop-seq 3' single cell RNA sequencing (scRNA-seq) method (Macosko 2015) with minor modifications to analyze the mRNA expression in single cells derived from 12 paired AML specimens procured at diagnosis and at relapse from prior CR. We obtained scRNA-seq data on 1000-2000 single cells per sample detecting approximately 2000-3000 unique molecular identifiers (UMIs) and 800-1500 genes per cell. Using WES or panel-based sequencing we determined mutations in known driver genes. Subsequently, we optimized novel methods for detection and mapping of mutated driver genes to individual cells using mutation specific PCR conditions and novel bioinformatics approaches. We annotated scRNA-seq expression profiles of the diagnosis and relapsed AML specimens individually using publicly available data for cell type-specific RNA markers derived from sorted normal cell populations and further compared the scRNA-seq data to scRNA-seq data of 5 pooled normal human bone marrows generated for this study. Results: Through analyses of scRNA-seq data of paired diagnosis and relapse AML specimens via principle components analyses (PCA) or t-distributed stochastic neighbor embedding (t-SNE) we detected varying degrees of separation of cell clusters in all cases analyzed indicative of substantial changes in single cell gene expression between AML diagnosis and relapse. A few of these observed cluster shifts were paralleled by gain or loss of mutated genes (e.g. FLT3-ITD) at relapse while most others lacked obvious clonal genomic markers. Through subsequent comparison of the expression similarities of single AML cells to sorted normal human bone marrow cells we detected two distinct AML relapse patterns: i) a pattern of relapse suggesting simple leukemia regrowth as evidenced by similar proportions of leukemia cells mapping onto discrete normal bone marrow cells (e.g. monocyte-like or GMPs or CMPs), and, ii) a pattern of relapse whereby the gene expression of relapsed cells (but not diagnosis cells) had similarity to normal hematopoietic cells that are conventionally placed more apical in the classical hematopoiesis differentiation cascade (HSCs, MPPs, CMPs; a phenotypic shift to immaturity). In addition, no leukemia sample mapped to just one classically defined bone marrow cell type but instead to multiple cell types, suggesting that most AML leukemia cells harbor aberrant hybrid cell gene expression patterns. Finally, we detected quantitative shifts in T cells and NK cells in some samples at relapse, which will be analyzed in greater detail. Conclusions: The comparative analysis of scRNA-seq data of paired AML specimens procured at diagnosis and relapse, identifies frequent and previously unrecognized changes in gene expression in leukemia cells at relapse. Through a comparison of gene mutation and gene expression at single cell resolution we identify two distinct AML relapse patterns in adult AML. Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助神勇的砖头采纳,获得10
1秒前
OCDer应助gcy采纳,获得50
2秒前
brodie完成签到,获得积分10
3秒前
红黄蓝完成签到 ,获得积分10
4秒前
5秒前
TheBugsss完成签到,获得积分10
5秒前
suxin发布了新的文献求助10
6秒前
tough发布了新的文献求助10
9秒前
三杠完成签到 ,获得积分10
10秒前
端庄的如花完成签到 ,获得积分10
10秒前
12秒前
12秒前
13秒前
王十二完成签到 ,获得积分10
13秒前
霸气的匕完成签到 ,获得积分10
15秒前
无辜茗完成签到 ,获得积分10
15秒前
hcl1210完成签到,获得积分10
16秒前
abcd_1067完成签到,获得积分10
17秒前
能量球发布了新的文献求助10
18秒前
18秒前
cccr02完成签到 ,获得积分10
18秒前
zhu完成签到 ,获得积分10
19秒前
xx完成签到,获得积分10
19秒前
研都不研了完成签到 ,获得积分10
20秒前
20秒前
feimengxia完成签到 ,获得积分10
22秒前
LL发布了新的文献求助10
23秒前
不想看文献完成签到 ,获得积分10
25秒前
小可爱完成签到 ,获得积分10
25秒前
28秒前
科研小能手完成签到,获得积分10
29秒前
30秒前
文明8完成签到,获得积分10
30秒前
linxm7完成签到,获得积分10
32秒前
mzhnx完成签到,获得积分10
33秒前
黄天发布了新的文献求助10
33秒前
珹澈完成签到 ,获得积分10
34秒前
陈伟杰发布了新的文献求助10
35秒前
菠萝完成签到 ,获得积分10
35秒前
Snow完成签到 ,获得积分10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385633
关于积分的说明 10541039
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308