毒性特征浸出程序
化学
浸出(土壤学)
萃取(化学)
磷酸盐
磷酸铁
核化学
土壤水分
环境化学
钙质的
碳酸盐
零价铁
地质学
色谱法
重金属
有机化学
吸附
古生物学
土壤科学
作者
Ruiqiang Liu,Dongye Zhao
出处
期刊:Water Research
[Elsevier BV]
日期:2007-06-01
卷期号:41 (12): 2491-2502
被引量:149
标识
DOI:10.1016/j.watres.2007.03.026
摘要
This study prepared and tested a new class of iron phosphate (vivianite) nanoparticles synthesized with sodium carboxymethyl cellulose (CMC) as a stabilizer for in situ immobilization of lead (Pb(2+)) in soils. Batch test results showed that the CMC-stabilized nanoparticles can effectively reduce the TCLP (toxicity characteristic leaching procedure) leachability and PBET (physiologically-based extraction test) bioaccessibility of Pb(2+) in three representative soils (calcareous, neutral, and acidic). When the soils were treated for 56 days at a dosage ranging from 0.61 to 3.0 mg/g-soil as PO(4)(3-), the TCLP leachability of Pb(2+) was reduced by 85-95%, whereas the bioaccessibility was lowered by 31-47%. Results from a sequential extraction procedure showed a 33-93% decrease of exchangeable Pb(2+) and carbonate-bound fractions, and an increase in residual-Pb(2+) fraction when Pb(2+)-spiked soils were amended with the nanoparticles. Addition of chloride in the treatment further decreased the TCLP-leachable Pb(2+) in soils, suggesting the formation of chloro-pyromorphite minerals. Compared to soluble phosphate used for in situ metal immobilization, application of the iron phosphate nanoparticles results in approximately 50% reduction in phosphate leaching into the environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI