Spatio-temporal fusion graph convolutional network for traffic flow forecasting

计算机科学 图形 相关性 系列(地层学) 数据挖掘 突出 深度学习 时间序列 人工智能 机器学习 理论计算机科学 数学 古生物学 几何学 生物
作者
Ying Ma,H. Lou,Ming Yan,Fanghui Sun,Guoqi Li
出处
期刊:Information Fusion [Elsevier BV]
卷期号:104: 102196-102196 被引量:25
标识
DOI:10.1016/j.inffus.2023.102196
摘要

In most recent research, the traffic forecasting task is typically formulated as a spatio-temporal graph modeling problem. For spatial correlation, they typically learn the shared pattern (i.e., the most salient pattern) of traffic series and measure the interdependence between traffic series based on a predefined graph. On the one hand, learning a specific traffic pattern for each node (traffic series) is crucial and essential for accurate spatial correlation learning. On the other hand, most predefined graphs cannot accurately represent the interdependence between traffic series because they are unchangeable while the prediction task changes. For temporal correlation, they usually concentrate on contiguous temporal correlation. Therefore, they are insufficient due to their lack of global temporal correlation learning. To overcome these aforementioned limitations, we propose a novel method named Spatio-Temporal Fusion Graph Convolutional Network (STFGCN). In the spatial aspect, we introduce a node-specific graph convolution operation to learn the node-specific patterns of each node (traffic series). Then, an adaptive adjacent matrix is introduced to represent the interdependence between traffic series. In the temporal aspect, a contiguous temporal correlation learning module is introduced to learn the contiguous temporal correlation of traffic series. Furthermore, a transformer-based global temporal correlation learning module is introduced to learn the global dependence of the traffic series. Experimental results show that our method significantly outperforms other competitive methods on two real-world traffic datasets (PeMSD4 and PeMSD8).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
活力太兰发布了新的文献求助10
3秒前
3秒前
无辜渊思发布了新的文献求助10
4秒前
学不完了发布了新的文献求助10
5秒前
科研通AI5应助1234采纳,获得10
7秒前
qczgzly发布了新的文献求助30
8秒前
倾卿如玉完成签到 ,获得积分10
9秒前
椿iii完成签到 ,获得积分10
9秒前
若雨凌风应助朴素的山蝶采纳,获得300
9秒前
sss完成签到 ,获得积分10
9秒前
komorebi发布了新的文献求助10
10秒前
11秒前
今后应助迷路旭采纳,获得10
12秒前
bellis发布了新的文献求助20
12秒前
15秒前
能干的新筠完成签到,获得积分10
15秒前
17秒前
17秒前
Alex发布了新的文献求助10
18秒前
18秒前
kylin完成签到,获得积分10
19秒前
台琳玉发布了新的文献求助30
20秒前
21秒前
长系青发布了新的文献求助10
21秒前
Livrik发布了新的文献求助10
22秒前
22秒前
qczgzly完成签到,获得积分10
22秒前
FashionBoy应助可恶啊采纳,获得10
24秒前
25秒前
26秒前
晨曦完成签到,获得积分10
28秒前
哈哈哈发布了新的文献求助10
28秒前
迷路旭发布了新的文献求助10
28秒前
29秒前
29秒前
SiDi发布了新的文献求助10
29秒前
夏日浅笑完成签到,获得积分10
30秒前
计算小凡完成签到 ,获得积分10
30秒前
Lucifer完成签到,获得积分10
31秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829234
求助须知:如何正确求助?哪些是违规求助? 3371950
关于积分的说明 10469874
捐赠科研通 3091536
什么是DOI,文献DOI怎么找? 1701181
邀请新用户注册赠送积分活动 818246
科研通“疑难数据库(出版商)”最低求助积分说明 770765