Is Maximal or Usual Walking Speed from Large Scale Wrist Sensor Data Better at Predicting Dementia, Depression and Death?*

痴呆 手腕 萧条(经济学) 物理医学与康复 老人忧郁量表 比例(比率) 计算机科学 心理学 医学 精神科 认知 内科学 物理 抑郁症状 疾病 经济 宏观经济学 放射科 量子力学
作者
Lloyd L. Y. Chan,Stephen R. Lord,Matthew A. Brodie
标识
DOI:10.1109/embc40787.2023.10340255
摘要

Older people are at increased risk of many adverse health outcomes, including dementia and depression, that burden the global health system. This paper presents algorithms for the large-scale assessment of daily walking speeds. We hypothesize that (i) data from wrist-worn sensors can be used to assess walking speed accurately; and that (ii) maximal daily walking speed is a better predictor of health outcomes than usual daily walking speed. First, algorithms were developed and tested using data from 101 participants aged 19 to 91 (47 ± 18) years. Participants wore an AX3 accelerometer (Axivity, UK) on their dominant wrist while undertaking daily life activities with electronic walkway data used for ground truth. Subsequently, prediction models for dementia, depression and death were developed using the data of 47,406 participants (≥ 60 years) from the UK Biobank study. Daily walking speeds were derived from 7-day AX3 data with time-to-events using electronic health records. The accuracy of derived walking speeds was assessed using root mean square error (RMSE). Time-to-events were modelled using Cox regression with inverse hazard ratios reported for univariable models and Harrell's concordance for multivariable models. Derived walking speeds had an RMSE of between 3% and 4% depending on arm position. We found that for simple models, maximal walking speed was significantly better than usual walking speed at predicting time to dementia (1.62 vs 1.34), depression (1.29 vs 1.17) and death (1.56 vs 1.27). However, the addition of known risk factors in subsequent multivariable models reduced the apparent benefit of using maximal as opposed to usual daily walking speed as the gait parameter. In summary, walking speed was accurately measured with a wrist-worn device, and maximal daily waking speed may be better than usual daily walking speed at predicting some adverse health outcomes.Clinical Relevance— This study demonstrated the validity of using a simple and unobtrusive wrist-worn sensor to remotely assess daily walking speed. As a single, modifiable and easily understood measure, maximal walking speed was shown to be better than usual walking speed at predicting time-to-dementia, depression and death. Therefore, the inclusion of maximal daily walking speed into screening programs and clinical interventions presents a promising area for further research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuke完成签到,获得积分10
1秒前
终醒完成签到,获得积分10
2秒前
苹果易真发布了新的文献求助10
2秒前
唐七完成签到,获得积分10
2秒前
小二郎应助likai采纳,获得10
2秒前
zumii完成签到,获得积分20
2秒前
何一非完成签到,获得积分10
3秒前
烟花应助简单的铃铛采纳,获得10
3秒前
kkk完成签到,获得积分10
4秒前
zhangyue7777完成签到,获得积分10
4秒前
迎海发布了新的文献求助10
5秒前
这个硬盘发布了新的文献求助10
5秒前
冷静水蓝发布了新的文献求助30
5秒前
丘比特应助DQ采纳,获得10
5秒前
6秒前
chenyan完成签到,获得积分10
6秒前
酷波er应助討厭喝水采纳,获得10
6秒前
复杂的夜香完成签到 ,获得积分10
6秒前
6秒前
Hang发布了新的文献求助10
7秒前
7秒前
expuery完成签到,获得积分10
8秒前
8秒前
小蘑菇应助renjiancihua采纳,获得10
8秒前
gao完成签到,获得积分10
8秒前
8秒前
April完成签到 ,获得积分10
9秒前
Owen完成签到,获得积分20
10秒前
精明的盼雁完成签到,获得积分10
10秒前
lvlvlvsh发布了新的文献求助10
10秒前
starying完成签到,获得积分10
10秒前
Akim应助xiaowang采纳,获得10
11秒前
wangji_2017完成签到,获得积分10
11秒前
jodie0105完成签到,获得积分10
12秒前
zongzong完成签到,获得积分10
12秒前
幸福的勒发布了新的文献求助10
12秒前
12秒前
年鱼精发布了新的文献求助10
13秒前
likai完成签到,获得积分10
14秒前
olofmeister发布了新的文献求助10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841160
求助须知:如何正确求助?哪些是违规求助? 3383161
关于积分的说明 10528368
捐赠科研通 3103115
什么是DOI,文献DOI怎么找? 1709122
邀请新用户注册赠送积分活动 822971
科研通“疑难数据库(出版商)”最低求助积分说明 773728