Pick-and-Place Transform Learning for Fast Multi-View Clustering

聚类分析 计算机科学 人工智能 特征学习 模式识别(心理学) 冗余(工程) 判别式 数据挖掘 操作系统
作者
Qiangqiang Shen,Yongyong Chen,Changqing Zhang,Yonghong Tian,Yongsheng Liang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1272-1284 被引量:5
标识
DOI:10.1109/tip.2024.3357257
摘要

To manipulate large-scale data, anchor-based multi-view clustering methods have grown in popularity owing to their linear complexity in terms of the number of samples. However, these existing approaches pay less attention to two aspects. 1) They target at learning a shared affinity matrix by using the local information from every single view, yet ignoring the global information from all views, which may weaken the ability to capture complementary information. 2) They do not consider the removal of feature redundancy, which may affect the ability to depict the real sample relationships. To this end, we propose a novel fast multi-view clustering method via pick-and-place transform learning named PPTL, which could capture insightful global features to characterize the sample relationships quickly. Specifically, PPTL first concatenates all the views along the feature direction to produce a global matrix. Considering the redundancy of the global matrix, we design a pick-and-place transform with ℓ 2,p -norm regularization to abandon the poor features and consequently construct a compact global representation matrix. Thus, by conducting anchor-based subspace clustering on the compact global representation matrix, PPTL can learn a consensus skinny affinity matrix with a discriminative clustering structure. Numerous experiments performed on small-scale to large-scale datasets demonstrate that our method is not only faster but also achieves superior clustering performance over state-of-the-art methods across a majority of the datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coco完成签到,获得积分10
2秒前
VictorySaber完成签到,获得积分10
2秒前
墨旱莲完成签到,获得积分10
2秒前
晚意完成签到 ,获得积分10
2秒前
袁金粉完成签到,获得积分20
3秒前
huangr123完成签到 ,获得积分10
4秒前
张张完成签到,获得积分20
4秒前
He完成签到,获得积分10
6秒前
席涑完成签到,获得积分10
7秒前
ThomasZ完成签到,获得积分10
8秒前
苹果骑士完成签到,获得积分10
9秒前
善学以致用应助袁金粉采纳,获得10
9秒前
居然是我完成签到,获得积分10
9秒前
可以完成签到,获得积分10
9秒前
9秒前
11秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
挖掘机应助科研通管家采纳,获得50
12秒前
冰魂应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
12秒前
Akim应助科研通管家采纳,获得10
12秒前
12秒前
一只东北鸟完成签到 ,获得积分10
14秒前
一帆风顺发布了新的文献求助10
16秒前
苹果完成签到,获得积分10
16秒前
16秒前
知无涯完成签到,获得积分10
19秒前
FashionBoy应助黄天采纳,获得10
20秒前
20秒前
xinghhhe完成签到,获得积分10
21秒前
科研通AI5应助神勇的砖头采纳,获得10
22秒前
忘崽子小拳头完成签到,获得积分10
22秒前
pjxxx完成签到 ,获得积分10
22秒前
柯飞扬发布了新的文献求助10
23秒前
23秒前
是瓜瓜不完成签到,获得积分10
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385633
关于积分的说明 10541039
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308