作者
Xiaodie Xu,Ying Wang,Tiantian Yang,Zengkun Wang,Chu Chu,Lin‐Bing Sun,Zekai Zhao,Ting Li,Hairong Yu,Ximing Wang,Peiji Song
摘要
Objective: This study aims to evaluate the predictive value of multiparameter characteristics of coronary computed tomography angiography (CCTA) plaque and the ratio of coronary artery volume to myocardial mass (V/M) in guiding percutaneous coronary stent implantation (PCI) in patients diagnosed with unstable angina. Methods: Patients who underwent CCTA and coronary angiography (CAG) within 2 months were retrospectively analyzed. According to CAG results, patients were divided into a medical therapy group (n=41) and a PCI revascularization group (n=37). The plaque characteristics and V/M were quantitatively evaluated. The parameters included minimum lumen area at stenosis (MLA), maximum area stenosis (MAS), maximum diameter stenosis (MDS), total plaque burden (TPB), plaque length, plaque volume, and each component volume within the plaque. Fractional flow reserve (FFR) and pericoronary fat attenuation index (FAI) were calculated based on CCTA. Artificial intelligence software was employed to compare the differences in each parameter between the 2 groups at both the vessel and plaque levels. Results: The PCI group had higher MAS, MDS, TPB, FAI, noncalcified plaque volume and lipid plaque volume, and significantly lower V/M, MLA, and CT-derived fractional flow reserve (FFRCT). V/M, TPB, MLA, FFRCT, and FAI are important influencing factors of PCI. The combined model of MLA, FFRCT, and FAI had the largest area under the ROC curve (AUC=0.920), and had the best performance in predicting PCI. Conclusions: The integration of AI-derived multiparameter features from one-stop CCTA significantly enhances the accuracy of predicting PCI in angina pectoris patients, evaluating at the plaque, vessel, and patient levels.