Base modified mesoporous silica adsorbent for heavy metal adsorption: Optimization of adsorption efficiency with machine learning algorithms

吸附 介孔二氧化硅 介孔材料 材料科学 金属 计算机科学 算法 化学 有机化学 冶金 催化作用
作者
Shital Tank,Madhu Pandey,Jagat Jyoti Rath,Mahuya Bandyopadhyay
标识
DOI:10.1016/j.hybadv.2025.100489
摘要

In this study, a thoroughly characterized amine-modified mesoporous silica adsorbent was synthesized and used for the extraction of toxic metals such as Ce(III), Hg(II), and Cu(II). The adsorption efficiency was evaluated by optimizing adsorbent dosage, adsorption time, pH, and NaCl concentration. The highest adsorption efficiencies achieved by the amine-modified material were 98% for Hg(II), 97% for Ce(III), and 90% for Cu(II) within 180 min of experimental time. The prepared hybrid materials demonstrated effective adsorption efficiencies for heavy metals. Accurately predicting the adsorption efficiency of heavy metals is crucial for enhancing the efficiency of heavy metal removal techniques in environmental and industrial applications. The adsorption efficiencies of three heavy metals were predicted using a small dataset of 87 samples and fourteen different machine learning algorithms, including linear models, ensemble methods, and support vector machine. The prediction performance was evaluated using various metrics considering both nominal and derived features. SHAP analysis was employed to understand feature dependence and significance about prediction performance. A novel stacking regressor was developed that demonstrated superior performance compared to other methods, achieving a better fit and higher accuracy. Furthermore, our findings underscored the significance of time in optimizing adsorption processes, which was consistently reflected across all feature sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
汉堡包应助hahah采纳,获得10
1秒前
善学以致用应助临河盗龙采纳,获得10
2秒前
123发布了新的文献求助10
3秒前
璆璆的虾发布了新的文献求助30
4秒前
小白完成签到,获得积分10
4秒前
纳米果发布了新的文献求助10
4秒前
廷聿完成签到,获得积分10
4秒前
大模型应助研友_pnx37L采纳,获得10
5秒前
yaoqi发布了新的文献求助10
6秒前
7秒前
11秒前
纳米果完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
mst完成签到,获得积分10
12秒前
Draeck发布了新的文献求助10
12秒前
杀出个黎明举报求助违规成功
13秒前
风中冰香举报求助违规成功
13秒前
哈基米德举报求助违规成功
13秒前
13秒前
科研通AI2S应助Kelly采纳,获得10
14秒前
14秒前
CodeCraft应助MJJJ采纳,获得30
14秒前
15秒前
16秒前
恒恒666发布了新的文献求助10
17秒前
小马甲应助梅陇路小博采纳,获得10
17秒前
知一完成签到,获得积分10
18秒前
充电宝应助五月天采纳,获得30
18秒前
Arthur完成签到 ,获得积分10
18秒前
不安枕头发布了新的文献求助10
19秒前
苹果绝山发布了新的文献求助10
19秒前
20秒前
20秒前
22秒前
田様应助xiu-er采纳,获得10
22秒前
小李发布了新的文献求助10
23秒前
司空悒完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406