亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid GWO-VMD-LSTM Surrogate Model for Vehicle-Track-Bridge Response Prediction Under Near-Fault Earthquakes

作者
Ziyi Wang,Hanyun Liu,Yan Han,Lizhong Jiang
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
标识
DOI:10.1142/s0219455427500908
摘要

To enhance the predictive efficiency and accuracy of high-speed railway vehicle-track-bridge (VTB) system responses under near-field earthquakes, this study proposes a hybrid surrogate model (GWO-VMD-LSTM) integrating long short-term memory neural networks (LSTM), grey wolf optimizer (GWO), and variational mode decomposition (VMD). This model employs GWO to optimize LSTM hyperparameters and VMD decomposition parameters, while incorporating temporal feature extraction and signal decomposition techniques to establish an efficient prediction framework. Its reliability and performance were systematically validated through field-measured data from an actual bridge engineering application. Then numerical case studies based on a nonlinear finite element model of a 9-span 32 meters VTB system were simulated by the extended Open Sees platform to perform a comparative evaluation of normal vibration responses and near-field seismic excitation scenarios. Key findings reveal that the GWO-LSTM model demonstrates superior performance in bridge displacement prediction compared to conventional convolutional neural networks (CNN) and LSTM architectures, achieving sustained high determination coefficients ([Formula: see text]). The enhanced GWO-VMD-LSTM configuration achieves significant improvement in acceleration response prediction accuracy, showing a maximum of 70% reduction in RMSE and MAE compared to CNN and LSTM models. The proposed hybrid surrogate model effectively captures nonlinear coupling characteristics of the VTB system under near-field seismic actions while achieving a reasonable balance between computational precision and efficiency, demonstrating substantial potential for seismic safety rapid assessment of moving trains across bridges during near-fault earthquakes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FU发布了新的文献求助10
12秒前
23秒前
37秒前
优美香露发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
41秒前
NexusExplorer应助优美香露采纳,获得10
57秒前
科研通AI6应助优美香露采纳,获得10
1分钟前
1分钟前
1分钟前
执着艳发布了新的文献求助150
1分钟前
2分钟前
2分钟前
玩命的糖豆完成签到 ,获得积分10
2分钟前
2分钟前
陈尹蓝完成签到 ,获得积分10
2分钟前
2分钟前
火山有点意思完成签到,获得积分10
2分钟前
千里草完成签到,获得积分10
2分钟前
寻道图强应助科研通管家采纳,获得30
2分钟前
Trivers应助科研通管家采纳,获得10
2分钟前
acd发布了新的文献求助10
2分钟前
2分钟前
2分钟前
hyy完成签到 ,获得积分10
2分钟前
李健的小迷弟应助Suchus采纳,获得10
2分钟前
3分钟前
优美香露发布了新的文献求助10
3分钟前
3分钟前
优美香露发布了新的文献求助80
3分钟前
万能图书馆应助acd采纳,获得10
3分钟前
优美香露发布了新的文献求助10
3分钟前
酷波er应助懦弱的丹秋采纳,获得10
3分钟前
安安爱阎魔完成签到,获得积分10
3分钟前
小马甲应助优美香露采纳,获得30
3分钟前
852应助优美香露采纳,获得10
3分钟前
3分钟前
Suchus发布了新的文献求助10
3分钟前
我不爱吃红苹果完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
雨jia发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657966
求助须知:如何正确求助?哪些是违规求助? 4815528
关于积分的说明 15080720
捐赠科研通 4816288
什么是DOI,文献DOI怎么找? 2577230
邀请新用户注册赠送积分活动 1532260
关于科研通互助平台的介绍 1490823