Deep Learning for Multiwell Automatic Log Correction

计算机科学 一致性(知识库) 集合(抽象数据类型) 钻孔 数据挖掘 测井 人工智能 噪音(视频) 比例(比率) 数据集 算法 机器学习 地质学 地球物理学 物理 图像(数学) 岩土工程 程序设计语言 量子力学
作者
Vanessa Simoes,Hiren Maniar,Aria Abubakar,Tao Zhao,Aria Abubakar,SLB,Tao Zhao,SLB
出处
期刊:Petrophysics [Society of Petrophysicists and Well Log Analysts (SPWLA)]
卷期号:63 (6): 724-747 被引量:4
标识
DOI:10.30632/pjv63n6-2022a10
摘要

Researchers have dedicated numerous applications of machine-learning (ML) techniques for fi eld-scale automated interpretation of well-log data. A critical prerequisite for automatic log processing is to ensure that the log characteristics are reasonably consistent across multiple wells. Manually correcting logs for consistency is laborious, subjective, and error prone. For some wellbore logs, such as gamma ray and neutron porosity, borehole effects and miscalibration can cause systematic inconsistencies or errors that might be present even after the application of wellbore and environmental corrections. Biased or consistently inaccurate data in the logs can confound ML approaches into learning erroneous relationships, leading to misinterpretations, such as wrong lithology prediction, reservoir estimation, and incorrect formation markers. To overcome such difficulties, we have developed a deep learning method to provide petrophysicists with a set of consistent logs through the multiwell automatic log correction (MALC) workflow. Presently, the corrections we target are systematic errors on the standard logs, especially gamma ray and neutron logs, random noises, and to a lesser extent, local formation property misreading due to washouts. We applied the proposed method in multiple fi elds worldwide containing different challenges, and in this paper, we include the results in two fi eld examples. The first one covers the correction of synthetic coherent noise added to fi eld data, and the second example covers the correction applied to original measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饭小心发布了新的文献求助20
刚刚
刚刚
刚刚
刚刚
1秒前
123发布了新的文献求助10
1秒前
1秒前
2秒前
王忘汪发布了新的文献求助10
2秒前
微微完成签到,获得积分10
2秒前
小二郎应助齐刘海采纳,获得10
3秒前
3秒前
MoreScholarship完成签到,获得积分10
3秒前
yangbo给yangbo的求助进行了留言
3秒前
3秒前
想退休了完成签到 ,获得积分10
3秒前
Xiaopan发布了新的文献求助10
4秒前
zik发布了新的文献求助10
4秒前
5秒前
李吉祥完成签到,获得积分10
5秒前
Hello应助任性雨筠采纳,获得10
5秒前
英姑应助xxxllllll采纳,获得30
5秒前
鲤鱼元槐完成签到,获得积分10
5秒前
隐形曼青应助听风遇见采纳,获得10
5秒前
搜集达人应助121采纳,获得10
5秒前
catchthebreeze完成签到,获得积分10
5秒前
布布拉拉完成签到,获得积分10
5秒前
6秒前
完美世界应助俏皮凝梦采纳,获得10
6秒前
ChemNiko完成签到,获得积分10
6秒前
luo完成签到,获得积分20
7秒前
酆小之发布了新的文献求助10
7秒前
小二郎应助楠烟采纳,获得10
7秒前
liyuheng20完成签到,获得积分10
7秒前
毕思真完成签到,获得积分10
7秒前
合适尔蝶发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498