Efficient Acceleration of Deep Learning Inference on Resource-Constrained Edge Devices: A Review

计算机科学 边缘设备 云计算 边缘计算 软件部署 深度学习 推论 人工智能 GSM演进的增强数据速率 分布式计算 机器学习 嵌入式系统 计算机工程 软件工程 操作系统
作者
Md Maruf Hossain Shuvo,Syed K. Islam,Jianlin Cheng,Bashir I. Morshed
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:111 (1): 42-91 被引量:102
标识
DOI:10.1109/jproc.2022.3226481
摘要

Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted in breakthroughs in many areas. However, deploying these highly accurate models for data-driven, learned, automatic, and practical machine learning (ML) solutions to end-user applications remains challenging. DL algorithms are often computationally expensive, power-hungry, and require large memory to process complex and iterative operations of millions of parameters. Hence, training and inference of DL models are typically performed on high-performance computing (HPC) clusters in the cloud. Data transmission to the cloud results in high latency, round-trip delay, security and privacy concerns, and the inability of real-time decisions. Thus, processing on edge devices can significantly reduce cloud transmission cost. Edge devices are end devices closest to the user, such as mobile phones, cyber–physical systems (CPSs), wearables, the Internet of Things (IoT), embedded and autonomous systems, and intelligent sensors. These devices have limited memory, computing resources, and power-handling capability. Therefore, optimization techniques at both the hardware and software levels have been developed to handle the DL deployment efficiently on the edge. Understanding the existing research, challenges, and opportunities is fundamental to leveraging the next generation of edge devices with artificial intelligence (AI) capability. Mainly, four research directions have been pursued for efficient DL inference on edge devices: 1) novel DL architecture and algorithm design; 2) optimization of existing DL methods; 3) development of algorithm–hardware codesign; and 4) efficient accelerator design for DL deployment. This article focuses on surveying each of the four research directions, providing a comprehensive review of the state-of-the-art tools and techniques for efficient edge inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
代代发布了新的文献求助10
1秒前
代号鸢尾完成签到,获得积分10
1秒前
吱吱的孜孜完成签到,获得积分10
1秒前
1秒前
田様应助ny960采纳,获得10
1秒前
2秒前
2秒前
虫虫发布了新的文献求助10
2秒前
yinhe028发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI5应助不安的伯云采纳,获得10
3秒前
田様应助scc采纳,获得10
3秒前
开心的向雁完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
夕荀发布了新的文献求助10
5秒前
xfyxxh完成签到,获得积分10
5秒前
SYLH应助颜靖仇采纳,获得10
5秒前
tramp应助颜靖仇采纳,获得10
5秒前
科研通AI2S应助颜靖仇采纳,获得10
6秒前
爆米花应助颜靖仇采纳,获得10
6秒前
Orange应助颜靖仇采纳,获得10
6秒前
善学以致用应助颜靖仇采纳,获得10
6秒前
SYLH应助颜靖仇采纳,获得10
6秒前
大个应助颜靖仇采纳,获得10
6秒前
stobely发布了新的文献求助10
6秒前
李爱国应助颜靖仇采纳,获得10
6秒前
星辰大海应助颜靖仇采纳,获得10
6秒前
潇洒的冷玉完成签到 ,获得积分10
6秒前
6秒前
商丘莺完成签到,获得积分10
6秒前
6秒前
科研通AI5应助温暖芸采纳,获得10
6秒前
乌恩发布了新的文献求助10
6秒前
wt9189999发布了新的文献求助10
7秒前
guo_a_n完成签到,获得积分10
7秒前
doushabear发布了新的文献求助30
7秒前
lhx完成签到,获得积分10
7秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330683
关于积分的说明 10247648
捐赠科研通 3046081
什么是DOI,文献DOI怎么找? 1671842
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759747