Data from Improvement of Tumor Neoantigen Detection by High-Field Asymmetric Waveform Ion Mobility Mass Spectrometry

离子迁移光谱法 质谱法 主要组织相容性复合体 计算生物学 癌症研究 分子生物学 化学 色谱法 生物化学 生物 基因
作者
Wei Meng,Yoshiko Takeuchi,Jeffrey P. Ward,Hussein Sultan,Cora D. Arthur,Elaine R. Mardis,Maxim N. Artyomov,Cheryl F. Lichti,Robert D. Schreiber
标识
DOI:10.1158/2326-6066.c.7380083
摘要

<div>Abstract<p>Cancer neoantigens have been shown to elicit cancer-specific T-cell responses and have garnered much attention for their roles in both spontaneous and therapeutically induced antitumor responses. Mass spectrometry (MS) profiling of tumor immunopeptidomes has been used, in part, to identify MHC-bound mutant neoantigen ligands. However, under standard conditions, MS-based detection of such rare but clinically relevant neoantigens is relatively insensitive, requiring 300 million cells or more. Here, to quantitatively define the minimum detectable amounts of therapeutically relevant MHC-I and MHC-II neoantigen peptides, we analyzed different dilutions of immunopeptidomes isolated from the well-characterized T3 mouse methylcholanthrene (MCA)-induced cell line by MS. Using either data-dependent acquisition or parallel reaction monitoring (PRM), we established the minimum amount of material required to detect the major T3 neoantigens in the presence or absence of high field asymmetric waveform ion mobility spectrometry (FAIMS). This analysis yielded a 14-fold enhancement of sensitivity in detecting the major T3 MHC-I neoantigen (mLama4) with FAIMS-PRM compared with PRM without FAIMS, allowing <i>ex vivo</i> detection of this neoantigen from an individual 100 mg T3 tumor. These findings were then extended to two other independent MCA-sarcoma lines (1956 and F244). This study demonstrates that FAIMS substantially increases the sensitivity of MS-based characterization of validated neoantigens from tumors.</p></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助王晓蕾采纳,获得10
刚刚
zwzh发布了新的文献求助10
1秒前
活泼莫英发布了新的文献求助10
1秒前
4秒前
万能图书馆应助良良丸采纳,获得10
4秒前
11发布了新的文献求助30
4秒前
4秒前
5秒前
施不评完成签到,获得积分10
5秒前
6秒前
6秒前
Threeeeeee发布了新的文献求助10
9秒前
下载发布了新的文献求助10
10秒前
11秒前
11秒前
hhh发布了新的文献求助10
12秒前
12秒前
往返自然发布了新的文献求助10
12秒前
大模型应助xinruLi采纳,获得10
13秒前
自觉问梅发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
yyyyy发布了新的文献求助10
15秒前
李爱国应助背后孤晴采纳,获得10
15秒前
Fish Yeung发布了新的文献求助10
16秒前
思源应助琦qi采纳,获得10
16秒前
无心的水桃完成签到,获得积分20
17秒前
TGU2331161488完成签到,获得积分10
17秒前
17秒前
猪猪完成签到,获得积分10
17秒前
CEJ发布了新的文献求助10
18秒前
hhh完成签到,获得积分10
19秒前
思源应助月半小董采纳,获得10
20秒前
20秒前
充电宝应助cccc采纳,获得10
21秒前
qq应助sss采纳,获得10
22秒前
22秒前
脑洞疼应助zwzh采纳,获得10
22秒前
木子梨狸完成签到,获得积分10
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835595
求助须知:如何正确求助?哪些是违规求助? 3377959
关于积分的说明 10501323
捐赠科研通 3097529
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772226