Amorphization by mechanical deformation

材料科学 无定形固体 变形(气象学) 金属间化合物 纳米压痕 非晶态金属 变形机理 相(物质) 复合材料 冶金 结晶学 合金 微观结构 化学 有机化学
作者
B.Y. Li,A.C. Li,Shiteng Zhao,Marc A. Meyers
出处
期刊:Materials Science and Engineering R [Elsevier]
卷期号:149: 100673-100673 被引量:21
标识
DOI:10.1016/j.mser.2022.100673
摘要

Amorphization of crystalline structures is a ubiquitous phenomenon in metals, ceramics, and intermetallic compounds. Although the amorphous phase generally has a higher Gibbs free energy than its crystalline counterpart, there are many methods by which amorphization can be generated. The requirement to create an amorphous phase from a solid crystalline one is to increase its free energy above a critical level which enables this transition. In this review, our focus is on amorphization induced by mechanical deformation which can be imparted by a variety of means, prominent among which are tribological processes, severe plastic deformation, nanoindentation, shock compression, diamond anvil cell and ball milling/mechanical alloying. The deformation introduces defects into the structure, raising its free energy to the level that it exceeds the one of the amorphous phase, thus propitiating conditions for amorphization. Experimental observations of amorphization in metallic alloys, intermetallic compounds, ionically and covalently bonded materials are presented and discussed. There is also an observation of amorphization in a biological material: it is generated by impact deformation of hydroxyapatite in the mantis shrimp club. We also focus on the fundamental mechanisms of plastic deformation of amorphous materials; this is a closely linked process by which deformation continues, beyond amorphization, in the new phase. Observations and analyses of amorphization are complemented by computational simulations that predict the process of mechanically-induced amorphization and address the mechanisms of this transformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qer发布了新的文献求助10
1秒前
轻松的慕凝完成签到 ,获得积分10
1秒前
Ploaris完成签到,获得积分10
2秒前
2秒前
徐梦蝶完成签到,获得积分10
6秒前
酷波er应助让让采纳,获得10
6秒前
Kroll完成签到,获得积分10
7秒前
wzd87790663完成签到,获得积分10
7秒前
9秒前
安清完成签到,获得积分10
10秒前
11秒前
完美世界应助风清扬采纳,获得10
11秒前
imi发布了新的文献求助10
12秒前
13秒前
传奇3应助qer采纳,获得10
13秒前
无尽可乐完成签到,获得积分20
13秒前
junjun完成签到,获得积分20
14秒前
15秒前
陈梓发布了新的文献求助10
15秒前
JHL完成签到,获得积分20
15秒前
度帕明完成签到,获得积分10
16秒前
紫金大萝卜应助ll123采纳,获得20
16秒前
字符串完成签到,获得积分10
16秒前
小蘑菇应助谨慎珊采纳,获得10
17秒前
李爱国应助嘿哟采纳,获得10
17秒前
18秒前
18秒前
ddd发布了新的文献求助10
18秒前
19秒前
哈哈哈发布了新的文献求助10
21秒前
度帕明发布了新的文献求助10
22秒前
22秒前
阿玖发布了新的文献求助10
22秒前
周遇安发布了新的文献求助10
22秒前
从容芮给jopaul的求助进行了留言
22秒前
22秒前
百里秋完成签到,获得积分20
23秒前
23秒前
24秒前
25秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2411118
求助须知:如何正确求助?哪些是违规求助? 2106243
关于积分的说明 5322109
捐赠科研通 1833701
什么是DOI,文献DOI怎么找? 913739
版权声明 560856
科研通“疑难数据库(出版商)”最低求助积分说明 488579