Anion regulation strategy of lithium-aluminum layered double hydroxides for strengthening resistance to deactivation in lithium recovery from brines

层状双氢氧化物 插层(化学) 吸附 锂(药物) 卤水 化学 选择性 解吸 无机化学 八面体 萃取(化学) 化学工程 离子 催化作用 有机化学 内分泌学 工程类 医学
作者
Shuaike Lv,Yunliang Zhao,Lingjie Zhang,Tingting Zhang,Guangfeng Dong,Dongxing Li,Shuai Cheng,Songliang Ma,Shaoxian Song,Mildred Quintana
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:472: 145026-145026 被引量:38
标识
DOI:10.1016/j.cej.2023.145026
摘要

Lithium aluminum layered double hydroxides (LiAl-LDHs) have emerged as the most promising adsorbent for lithium extraction from salt lake brines. However, the development of LiAl-LDHs is impeded by their susceptibility to structural collapse and deactivation during desorption process. Herein, an interlayer anion regulation strategy was proposed to endow LiAl-LDHs with superior resistance to deactivation induced by excessive Li+ deintercalation through strengthening the interlayer interactions. Consequently, a novel LiAl-LDH with interlayer Cl− partially replaced by PO43− (LiAl-LDH-P) was synthesized by coupling PO43− intercalation with Li+ insertion during co-precipitation. Combining DFT calculations and elution strength experiments, it was revealed that the intercalated PO43− could anchor Li+ into the vacancies of Al-O octahedron via high interlayer binding energy and strong electrostatic interaction, which imparted LiAl-LDH-P with an excellent anti-elution deactivation ability. Moreover, LiAl-LDH-P presented distinctly advanced compared to commercialized and reported LiAl-LDHs, with extraordinary Li+ adsorption capacity (9.35 mg/g), selectivity (separation factors of 270.3, 450.3, 453.7 for Li+/Na+, Li+/K+, Li+/Mg2+, respectively), and reusability in Lop Nor brine, even at the ultra-high eluent consumption. Furthermore, the physicochemical properties and Li+-extraction mechanism of the LiAl-LDH-P were investigated as well. This work provides a promising strategy to solve the current deactivation of LiAl-LDHs and offers a prospective adsorbent for Li+ extraction from brine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LkD09n发布了新的文献求助10
2秒前
坦率的从波完成签到 ,获得积分10
4秒前
可口可乐发布了新的文献求助10
5秒前
袁泽完成签到,获得积分10
9秒前
科研通AI5应助lizhiqian2024采纳,获得10
11秒前
DDAIDN完成签到,获得积分10
12秒前
MRJJJJ完成签到,获得积分10
14秒前
nove999完成签到 ,获得积分10
14秒前
16秒前
17秒前
D-L@rabbit完成签到 ,获得积分10
19秒前
19秒前
EMMA发布了新的文献求助10
21秒前
21秒前
tsntn完成签到,获得积分10
23秒前
爆米花应助周小鱼采纳,获得10
24秒前
温暖的颜演完成签到 ,获得积分10
24秒前
Orchid发布了新的文献求助10
25秒前
认真的问枫完成签到 ,获得积分10
31秒前
CipherSage应助EMMA采纳,获得30
34秒前
酷波er应助科研通管家采纳,获得10
34秒前
诸葛御风应助科研通管家采纳,获得10
34秒前
英姑应助科研通管家采纳,获得10
34秒前
35秒前
35秒前
夜白应助科研通管家采纳,获得20
35秒前
Jasper应助科研通管家采纳,获得10
35秒前
无限的山水完成签到,获得积分10
36秒前
天天完成签到 ,获得积分10
40秒前
42秒前
专注的水壶完成签到 ,获得积分10
42秒前
44秒前
高贵的晓筠完成签到 ,获得积分10
45秒前
大个应助zhouzhou采纳,获得10
45秒前
tinydog完成签到,获得积分10
45秒前
可口可乐完成签到,获得积分10
46秒前
517完成签到 ,获得积分10
46秒前
彪壮的绮烟完成签到,获得积分10
47秒前
天天发布了新的文献求助10
47秒前
周小鱼发布了新的文献求助10
49秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726