UniMiSS+: Universal Medical Self-Supervised Learning From Cross-Dimensional Unpaired Data

人工智能 计算机科学 模式识别(心理学) 机器学习
作者
Yutong Xie,Jianpeng Zhang,Yong Xia,Qi Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10021-10035 被引量:7
标识
DOI:10.1109/tpami.2024.3436105
摘要

Self-supervised learning (SSL) opens up huge opportunities for medical image analysis that is well known for its lack of annotations. However, aggregating massive (unlabeled) 3D medical images like computerized tomography (CT) remains challenging due to its high imaging cost and privacy restrictions. In our pilot study, we advocated bringing a wealth of 2D images like X-rays as compensation for the lack of 3D data, aiming to build a universal medical self-supervised representation learning framework, called UniMiSS. Especially, we designed a pyramid U-like medical Transformer (MiT) as the backbone to make UniMiSS possible to perform SSL with both 2D and 3D images. UniMiSS surpasses current 3D-specific SSL in effectiveness and versatility, excelling in various downstream tasks and overcoming the limitations of dimensionality. However, the initial version did not fully explore the anatomical correlations between 2D and 3D images due to the absence of paired multi-modal patient data. In this extension, we introduce UniMiSS+, which leverages digitally reconstructed radiographs (DRR) technology to simulate X-rays from CT volumes, providing access to paired data. Benefiting from the paired group, we introduce an extra pair-wise constraint to boost the cross modality correlation learning, which also can be adopted as a cross dimension regularization to further improve the representations. We conduct expensive experiments on multiple 3D/2D medical image analysis tasks, including segmentation and classification. The results show that our UniMiSS+ achieves promising performance on various downstream tasks, not only outperforming ImageNet pre-training and other advanced SSL counterparts but also improving the predecessor UniMiSS pre-training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月乐完成签到,获得积分10
1秒前
刻苦大门完成签到 ,获得积分10
2秒前
沉默羔羊完成签到,获得积分10
2秒前
Sang发布了新的文献求助10
2秒前
happy发布了新的文献求助10
2秒前
虚幻唯雪关注了科研通微信公众号
3秒前
3秒前
lmgj发布了新的文献求助10
4秒前
manji发布了新的文献求助10
5秒前
丁一发布了新的文献求助10
5秒前
5秒前
smottom应助Wynne采纳,获得10
5秒前
5秒前
JamesPei应助吃肉璇璇采纳,获得10
7秒前
7秒前
旺仔发布了新的文献求助10
7秒前
9秒前
丫丫发布了新的文献求助10
9秒前
大个应助退堂鼓艺术家采纳,获得10
9秒前
9秒前
张云志发布了新的文献求助10
10秒前
科研通AI2S应助晚上吃什么采纳,获得10
11秒前
学术牛马发布了新的文献求助10
11秒前
11秒前
11秒前
zz发布了新的文献求助30
11秒前
拼搏迎梦完成签到,获得积分10
11秒前
科研通AI6.1应助贾学冲采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
学术羊发布了新的文献求助10
14秒前
15秒前
季节发布了新的文献求助10
16秒前
沉默的倔驴应助科技墨采纳,获得20
16秒前
CipherSage应助Islet采纳,获得10
17秒前
灵巧汉堡完成签到 ,获得积分10
17秒前
科研通AI6.1应助云淡风轻采纳,获得10
18秒前
18秒前
传奇3应助杏杏采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300