亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic cortical connectivity alterations associated with Major Depressive Disorder: an EEG study

脑电图 重性抑郁障碍 萧条(经济学) 精神病理学 心理学 功能连接 神经科学 临床心理学 精神科 扁桃形结构 宏观经济学 经济
作者
Yanqin Lei,Hui Chen,Rihui Li,Jiansong Zhou,Nanyi Cui
标识
DOI:10.1109/embc40787.2023.10340859
摘要

There are various depressive subtypes identified in patients with major depressive disorder (MDD). Depression with psychotic symptoms is usually known to be a severe type of depression that includes symptoms such as delusions and/or hallucinations, and remains a common condition that is often underrecognized and inadequately treated in clinical practice. Electroencephalography (EEG) biomarkers have been implicated to classify healthy and psychopathological neural signals using machine learning algorithms. In this study, we sought to identify cortical functional connectivity metrics that differentiate network manifestation of different depressive subtypes and healthy controls. We first performed replication analyses to obtain the principal functional connectivity microstates across each independent group (healthy controls, psychotic depressions and nonpsychotic depressions). Next, we examined temporal functional connectivity dynamics in each group. The results show that fundamental dynamic functional connectivity microstates are highly reproducible, both within and across participants. Based on the temporal and sequential parameters (mean duration, fractional windows and transition number) derived from dynamic functional connectivity analysis, we found inter-group differences across healthy and MDD subgroups statistically significant. These results show that the principal FC microstates dynamics are essential neural biomarkers distinctly associated with depression clinical phenotypes.Clinical relevance—Our findings suggest that a network-level feature, that may reflect the neurobiological difference between different depression subtypes, and healthy controls, and in turn may contribute towards a scalable EEG-based assisted diagnostic tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爱科研的小凡完成签到 ,获得积分10
3秒前
hearan发布了新的文献求助10
5秒前
CipherSage应助榴下晨光采纳,获得10
7秒前
10秒前
梁33完成签到,获得积分10
11秒前
顾萘发布了新的文献求助10
16秒前
奔放的老青年完成签到,获得积分10
18秒前
23秒前
淡淡宇宇宝宝完成签到,获得积分10
23秒前
要减肥夜梦完成签到,获得积分10
30秒前
英姑应助谦让的思枫采纳,获得10
31秒前
32秒前
33秒前
爱吃大米饭完成签到 ,获得积分10
35秒前
36秒前
榴下晨光发布了新的文献求助10
38秒前
hujin发布了新的文献求助10
46秒前
学有所成完成签到,获得积分10
46秒前
ZYP完成签到,获得积分10
47秒前
英姑应助yan采纳,获得10
55秒前
55秒前
雨下听风完成签到,获得积分10
1分钟前
顾萘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
晴云完成签到 ,获得积分10
1分钟前
yan发布了新的文献求助10
1分钟前
1分钟前
顾萘完成签到,获得积分10
1分钟前
左左曦完成签到,获得积分10
1分钟前
CodeCraft应助要减肥夜梦采纳,获得10
1分钟前
1分钟前
Jasper应助坚定的蓝天采纳,获得10
1分钟前
之南发布了新的文献求助10
1分钟前
善学以致用应助tingtingliuok采纳,获得10
1分钟前
李爱国应助xuanxuan采纳,获得10
1分钟前
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232286
求助须知:如何正确求助?哪些是违规求助? 4401648
关于积分的说明 13699196
捐赠科研通 4267979
什么是DOI,文献DOI怎么找? 2342218
邀请新用户注册赠送积分活动 1339277
关于科研通互助平台的介绍 1295863