LRSNet: a high-efficiency lightweight model for object detection in remote sensing

计算机科学 目标检测 特征(语言学) 棱锥(几何) 人工智能 特征提取 频道(广播) 遥感 计算机视觉 深度学习 对象(语法) 计算复杂性理论 模式识别(心理学) 算法 电信 哲学 语言学 物理 光学 地质学
作者
Shiliang Zhu,Min Miao,Yutong Wang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (01)
标识
DOI:10.1117/1.jrs.18.016502
摘要

Unmanned aerial vehicles (UAVs) exhibit the ability to flexibly conduct aerial remote-sensing imaging. By employing deep learning object-detection algorithms, they efficiently perceive objects, finding widespread application in various practical engineering tasks. Consequently, UAV-based remote sensing object detection technology holds considerable research value. However, the background of UAV remote sensing images is often complex, with varying shooting angles and heights leading to difficulties in unifying target scales and features. Moreover, there is the challenge of numerous densely distributed small targets. In addition, UAVs face significant limitations in terms of hardware resources. Against this background, we propose a lightweight remote sensing object detection network (LRSNet) model based on YOLOv5s. In the backbone of LRSNet, the lightweight network MobileNetV3 is used to substantially reduce the model’s computational complexity and parameter count. In the model’s neck, a multiscale feature pyramid network named CM-FPN is introduced to enhance the detection capability of small objects. CM-FPN comprises two key components: C3EGhost, based on GhostNet and efficient channel attention modules, and the multiscale feature fusion channel attention mechanism (MFFC). C3EGhost, serving as CM-FPN’s primary feature extraction module, possesses lower computational complexity and fewer parameters, as well as effectively reducing background interference. MFFC, as the feature fusion node of CM-FPN, can adaptively weight the fusion of shallow and deep features, acquiring more effective details and semantic information for object detection. LRSNet, evaluated on the NWPU VHR-10, DOTA V1.0, and VisDrone-2019 datasets, achieved mean average precision of 94.0%, 71.9%, and 35.6%, with Giga floating-point operations per second and Param (M) measuring only 5.8 and 4.1, respectively. This outcome affirms the efficiency of LRSNet in UAV-based remote-sensing object detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助IchenNG采纳,获得50
1秒前
小二郎应助贵贵采纳,获得10
3秒前
亦犹未进发布了新的文献求助10
4秒前
上官若男应助瓜瓜叽叽采纳,获得10
4秒前
5秒前
5秒前
Hans发布了新的文献求助10
5秒前
嘿嘿完成签到,获得积分10
6秒前
燕燕于飞发布了新的文献求助10
6秒前
CH发布了新的文献求助20
6秒前
晴天完成签到,获得积分10
6秒前
7秒前
8秒前
赵瑞完成签到,获得积分10
8秒前
hu完成签到,获得积分10
8秒前
mix完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
111完成签到,获得积分20
11秒前
寒冷的世界完成签到 ,获得积分10
11秒前
张亚慧发布了新的文献求助10
12秒前
liutengfei123发布了新的文献求助10
12秒前
12秒前
yuaner发布了新的文献求助10
13秒前
活泼可冥完成签到,获得积分20
14秒前
chili完成签到,获得积分10
14秒前
dongdong发布了新的文献求助10
14秒前
14秒前
风中的非笑完成签到,获得积分10
15秒前
15秒前
脑洞疼应助啦啦啦采纳,获得10
15秒前
乌龟娟发布了新的文献求助10
16秒前
XLtx完成签到,获得积分10
16秒前
YOLO完成签到,获得积分10
16秒前
周周完成签到,获得积分20
17秒前
Zzz完成签到,获得积分10
17秒前
飘逸楷瑞完成签到,获得积分10
17秒前
嗯呐完成签到,获得积分10
18秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588