Vehicle Re-identification in Aerial Images and Videos: Dataset and Approach

突出 人工智能 计算机视觉 计算机科学 判别式 航空影像 显著性(神经科学) 方向(向量空间) 航空影像 图像(数学) 几何学 数学
作者
Bingliang Jiao,Lü Yang,Liying Gao,Peng Wang,Shizhou Zhang,Yanning Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1586-1603 被引量:5
标识
DOI:10.1109/tcsvt.2023.3298788
摘要

In this work, we propose a large-scale dataset, VRAI, and an effective Orientation Adaptive and Salience Attentive (OASA) Network for vehicle re-identification (ReID) in aerial imagery. The VRAI dataset includes two subsets: VRAI-Image, which contains over 137,000 images of 13,000 vehicle instances, and VRAI-Video, which comprises more than 14,000 video trajectories of 7,000 identities. To our best knowledge, this is the largest dataset for UAV-based vehicle ReID, and the first dataset proposed for video-based ReID under UAV views. Based on the VRAI dataset, we design an OASA network to address two crucial challenges of vehicle ReID in aerial imagery. Firstly, the significant vehicle orientation variations in aerial images could cause great vehicle pattern deformations, making it difficult to identify vehicles across UAV views. To overcome this challenge, in our OASA, an orientation adaptive dynamic convolution module is designed, which constructs customized kernels for each vehicle instance to extract orientation-invariant features. Besides, the unique vertical view and long focal length of the UAV platform often render many salient vehicle attributes, such as logos and license plates, invisible, which brings a great challenge to ReID models to extract distinguishable vehicle features. To address this issue, in the OASA, we design a transformer-based salience attentive module (Trans-Attn) that guides the model to focus on subtle yet discriminative clues of vehicle instances in aerial imagery. Through extensive experiments, both of our designed modules are verified effective. Besides, our OASA model outperforms state-of-the-art algorithms both on our VRAI dataset and other surveillance-based datasets. Our VRAI dataset is available in https://github.com/JiaoBL1234/VRAI-Dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111完成签到 ,获得积分10
1秒前
动人的怀柔完成签到,获得积分10
2秒前
米兰达完成签到 ,获得积分0
2秒前
2秒前
紫不语发布了新的文献求助30
3秒前
axin完成签到,获得积分20
3秒前
yyybxqmz发布了新的文献求助10
4秒前
4秒前
飲料大隊長完成签到,获得积分10
5秒前
赘婿应助没有花活儿采纳,获得10
6秒前
南巷酒肆完成签到,获得积分10
6秒前
axin发布了新的文献求助10
7秒前
zzuwxj发布了新的文献求助10
7秒前
wanci应助迷糊的七七采纳,获得10
10秒前
10秒前
Answer完成签到,获得积分10
13秒前
迷糊完成签到,获得积分10
15秒前
刘鑫宇完成签到,获得积分10
16秒前
chen发布了新的文献求助10
16秒前
水蜜桃幽灵完成签到,获得积分10
17秒前
罐装冰块发布了新的文献求助10
18秒前
上官若男应助小咩采纳,获得10
19秒前
一粟完成签到,获得积分10
21秒前
23秒前
科研通AI2S应助聪明摩托采纳,获得10
24秒前
24秒前
栗栗栗知完成签到,获得积分10
26秒前
无花果应助lijinyu采纳,获得10
27秒前
FashionBoy应助刘鑫宇采纳,获得10
27秒前
子木完成签到,获得积分10
28秒前
yyybxqmz完成签到,获得积分10
28秒前
28秒前
ww发布了新的文献求助10
29秒前
孙宇发布了新的文献求助20
32秒前
科研通AI5应助凤凰涅槃采纳,获得10
32秒前
小巧的可仁完成签到 ,获得积分10
34秒前
cxlhzq发布了新的文献求助10
34秒前
搜集达人应助zzuwxj采纳,获得10
35秒前
39秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825251
求助须知:如何正确求助?哪些是违规求助? 3367521
关于积分的说明 10446344
捐赠科研通 3086892
什么是DOI,文献DOI怎么找? 1698353
邀请新用户注册赠送积分活动 816713
科研通“疑难数据库(出版商)”最低求助积分说明 769937