GS-LIVO: Real-Time LiDAR, Inertial, and Visual Multisensor Fused Odometry With Gaussian Mapping

里程计 人工智能 计算机视觉 激光雷达 计算机科学 视觉里程计 惯性测量装置 高斯分布 高斯过程 惯性参考系 遥感 移动机器人 机器人 地理 物理 量子力学
作者
Sheng Hong,Chunran Zheng,Yueqian Shen,Changze Li,Fu Zhang,Tong Qin,Shaojie Shen
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:41: 4253-4268 被引量:3
标识
DOI:10.1109/tro.2025.3582809
摘要

In recent years, 3D Gaussian splatting (3D-GS) has emerged as a novel scene representation approach. However, existing vision-only 3D-GS methods often rely on hand-crafted heuristics for point-cloud densification and face challenges in handling occlusions and high GPU memory and computation consumption [1]. LiDAR-Inertial-Visual (LIV) sensor configuration has demonstrated superior performance in precise localization and dense mapping by leveraging complementary sensing characteristics: rich texture information from cameras, precise geometric measurements from LiDAR, and high-frequency motion data from IMU [2]-[8]. Inspired by this, we propose a novel real-time Gaussian-based simultaneous localization and mapping (SLAM) system. Our map system comprises a global Gaussian map and a sliding window of Gaussians, along with an IESKF-based real-time odometry utilizing Gaussian maps. The structure of the global Gaussian map consists of hash-indexed voxels organized in a recursive octree. This hierarchical structure effectively covers sparse spatial volumes while adapting to different levels of detail and scales in the environment. The Gaussian map is efficiently initialized through multi-sensor fusion and optimized with photometric gradients. Our system incrementally maintains a sliding window of Gaussians with minimal graphics memory usage, significantly reducing GPU computation and memory consumption by only optimizing the map within the sliding window, enabling real-time optimization. Moreover, we implement a tightly coupled multi-sensor fusion odometry with an iterative error state Kalman filter (IESKF), which leverages real-time updating and rendering of the Gaussian map to achieve competitive localization accuracy. Our system represents the first real-time Gaussian-based SLAM framework deployable on resource-constrained embedded systems (all implemented in C++/CUDA for efficiency), demonstrated on the NVIDIA Jetson Orin NX platform. The framework achieves real-time pe...

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
僵尸哈哈发布了新的文献求助10
刚刚
刚刚
orixero应助taijingjing采纳,获得10
1秒前
1秒前
颖中竹子完成签到,获得积分10
1秒前
开心的小熊猫完成签到,获得积分10
1秒前
1秒前
kwan完成签到,获得积分10
1秒前
1秒前
JamesPei应助Ryne采纳,获得10
1秒前
沉默小笼包完成签到 ,获得积分10
2秒前
疾风骤雨关注了科研通微信公众号
2秒前
melone完成签到,获得积分10
2秒前
YY完成签到,获得积分10
3秒前
汉堡包应助Doctor异乡人采纳,获得10
3秒前
笨笨歌曲完成签到,获得积分10
4秒前
5秒前
努力搞科研完成签到,获得积分10
5秒前
小马发布了新的文献求助10
5秒前
Hello应助DJDJ采纳,获得10
5秒前
逸龙完成签到,获得积分0
5秒前
11发布了新的文献求助10
5秒前
miaomiao完成签到,获得积分10
5秒前
6秒前
zhangxf608完成签到,获得积分10
6秒前
跨材料给害羞雨南的求助进行了留言
7秒前
wfrg完成签到,获得积分10
7秒前
科研通AI6应助流年采纳,获得10
7秒前
7秒前
2224536完成签到,获得积分10
7秒前
张狗蛋发布了新的文献求助10
7秒前
臻酒完成签到 ,获得积分10
8秒前
彭于晏应助hyue采纳,获得10
9秒前
9秒前
andy完成签到,获得积分10
9秒前
英俊的铭应助伶俐的绿蓉采纳,获得10
10秒前
最专业完成签到,获得积分10
10秒前
10秒前
11秒前
强小强完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270404
求助须知:如何正确求助?哪些是违规求助? 4428490
关于积分的说明 13784907
捐赠科研通 4306348
什么是DOI,文献DOI怎么找? 2363078
邀请新用户注册赠送积分活动 1358762
关于科研通互助平台的介绍 1321631