BI-RADS Category Assignments by GPT-3.5, GPT-4, and Google Bard: A Multilanguage Study

医学 麦克内马尔试验 双雷达 乳腺摄影术 介绍 乳房成像 乳腺癌 放射科 家庭医学 癌症 内科学 统计 数学
作者
Andrea Cozzi,Katja Pinker,Andri Hidber,Tianyu Zhang,Luca Bonomo,Roberto Lo Gullo,Blake Christianson,Marco Curti,Stefania Rizzo,Filippo Del Grande,Ritse M. Mann,Simone Schiaffino
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:20
标识
DOI:10.1148/radiol.232133
摘要

Background The performance of publicly available large language models (LLMs) remains unclear for complex clinical tasks. Purpose To evaluate the agreement between human readers and LLMs for Breast Imaging Reporting and Data System (BI-RADS) categories assigned based on breast imaging reports written in three languages and to assess the impact of discordant category assignments on clinical management. Materials and Methods This retrospective study included reports for women who underwent MRI, mammography, and/or US for breast cancer screening or diagnostic purposes at three referral centers. Reports with findings categorized as BI-RADS 1-5 and written in Italian, English, or Dutch were collected between January 2000 and October 2023. Board-certified breast radiologists and the LLMs GPT-3.5 and GPT-4 (OpenAI) and Bard, now called Gemini (Google), assigned BI-RADS categories using only the findings described by the original radiologists. Agreement between human readers and LLMs for BI-RADS categories was assessed using the Gwet agreement coefficient (AC1 value). Frequencies were calculated for changes in BI-RADS category assignments that would affect clinical management (ie, BI-RADS 0 vs BI-RADS 1 or 2 vs BI-RADS 3 vs BI-RADS 4 or 5) and compared using the McNemar test. Results Across 2400 reports, agreement between the original and reviewing radiologists was almost perfect (AC1 = 0.91), while agreement between the original radiologists and GPT-4, GPT-3.5, and Bard was moderate (AC1 = 0.52, 0.48, and 0.42, respectively). Across human readers and LLMs, differences were observed in the frequency of BI-RADS category upgrades or downgrades that would result in changed clinical management (118 of 2400 [4.9%] for human readers, 611 of 2400 [25.5%] for Bard, 573 of 2400 [23.9%] for GPT-3.5, and 435 of 2400 [18.1%] for GPT-4;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助淡定白枫采纳,获得10
刚刚
1秒前
芝芝完成签到,获得积分10
1秒前
ZQJ完成签到,获得积分10
1秒前
bettersy完成签到,获得积分10
1秒前
1秒前
lanlan完成签到,获得积分10
2秒前
浅沫juanjuan完成签到,获得积分10
2秒前
2秒前
落雨声完成签到,获得积分10
2秒前
2秒前
念芹完成签到,获得积分10
2秒前
飞鸟完成签到 ,获得积分10
3秒前
w_tiger完成签到 ,获得积分10
3秒前
迷路冰颜完成签到 ,获得积分10
3秒前
zhou完成签到,获得积分10
3秒前
11完成签到,获得积分20
3秒前
ZQJ发布了新的文献求助10
4秒前
彩色的涵瑶完成签到,获得积分10
4秒前
Brad_AN完成签到,获得积分10
5秒前
zww发布了新的文献求助10
5秒前
小璐璐呀完成签到,获得积分10
6秒前
咚咚完成签到 ,获得积分10
6秒前
溪水完成签到 ,获得积分10
6秒前
7秒前
贾舒涵完成签到,获得积分10
8秒前
冻冻妖完成签到,获得积分10
8秒前
东方耀发布了新的文献求助10
8秒前
lz完成签到,获得积分10
8秒前
科研后腿发布了新的文献求助10
8秒前
健壮的秋寒完成签到,获得积分10
8秒前
笨笨烨华完成签到 ,获得积分10
9秒前
Auston_zhong应助Xantareas采纳,获得10
9秒前
t通完成签到,获得积分10
10秒前
望望旺仔牛奶完成签到,获得积分10
10秒前
流草林完成签到,获得积分10
10秒前
tanglu完成签到,获得积分10
11秒前
linkr5完成签到,获得积分10
11秒前
12秒前
zero37完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609