BI-RADS Category Assignments by GPT-3.5, GPT-4, and Google Bard: A Multilanguage Study

医学 麦克内马尔试验 双雷达 乳腺摄影术 介绍 乳房成像 乳腺癌 放射科 家庭医学 癌症 内科学 统计 数学
作者
Andrea Cozzi,Katja Pinker,Andri Hidber,Tianyu Zhang,Luca Bonomo,Roberto Lo Gullo,Blake Christianson,Marco Curti,Stefania Rizzo,Filippo Del Grande,Ritse M. Mann,Simone Schiaffino
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:43
标识
DOI:10.1148/radiol.232133
摘要

Background The performance of publicly available large language models (LLMs) remains unclear for complex clinical tasks. Purpose To evaluate the agreement between human readers and LLMs for Breast Imaging Reporting and Data System (BI-RADS) categories assigned based on breast imaging reports written in three languages and to assess the impact of discordant category assignments on clinical management. Materials and Methods This retrospective study included reports for women who underwent MRI, mammography, and/or US for breast cancer screening or diagnostic purposes at three referral centers. Reports with findings categorized as BI-RADS 1-5 and written in Italian, English, or Dutch were collected between January 2000 and October 2023. Board-certified breast radiologists and the LLMs GPT-3.5 and GPT-4 (OpenAI) and Bard, now called Gemini (Google), assigned BI-RADS categories using only the findings described by the original radiologists. Agreement between human readers and LLMs for BI-RADS categories was assessed using the Gwet agreement coefficient (AC1 value). Frequencies were calculated for changes in BI-RADS category assignments that would affect clinical management (ie, BI-RADS 0 vs BI-RADS 1 or 2 vs BI-RADS 3 vs BI-RADS 4 or 5) and compared using the McNemar test. Results Across 2400 reports, agreement between the original and reviewing radiologists was almost perfect (AC1 = 0.91), while agreement between the original radiologists and GPT-4, GPT-3.5, and Bard was moderate (AC1 = 0.52, 0.48, and 0.42, respectively). Across human readers and LLMs, differences were observed in the frequency of BI-RADS category upgrades or downgrades that would result in changed clinical management (118 of 2400 [4.9%] for human readers, 611 of 2400 [25.5%] for Bard, 573 of 2400 [23.9%] for GPT-3.5, and 435 of 2400 [18.1%] for GPT-4;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
里昂义务发布了新的文献求助10
8秒前
xiaofenzi完成签到 ,获得积分10
8秒前
kaokao完成签到,获得积分20
17秒前
Akim应助LLZ采纳,获得10
21秒前
直率新柔完成签到 ,获得积分10
26秒前
baoxiaozhai完成签到 ,获得积分10
27秒前
CJW完成签到 ,获得积分10
29秒前
racill完成签到 ,获得积分10
30秒前
河堤完成签到 ,获得积分10
34秒前
beihaik完成签到 ,获得积分10
35秒前
35秒前
jerry完成签到 ,获得积分10
41秒前
惜曦完成签到 ,获得积分10
47秒前
swordshine完成签到,获得积分10
55秒前
白昼の月完成签到 ,获得积分0
58秒前
微雨若,,完成签到 ,获得积分10
59秒前
英俊的铭应助莫问今生采纳,获得30
1分钟前
磊磊完成签到,获得积分10
1分钟前
丰富的硬币完成签到 ,获得积分10
1分钟前
xzj完成签到 ,获得积分10
1分钟前
美少叔叔完成签到 ,获得积分10
1分钟前
1分钟前
儒雅巧荷发布了新的文献求助10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
公西翠萱完成签到 ,获得积分10
1分钟前
重要手机完成签到 ,获得积分10
1分钟前
飞快的冰淇淋完成签到 ,获得积分10
1分钟前
赘婿应助儒雅巧荷采纳,获得10
1分钟前
研友_8y2G0L完成签到,获得积分10
1分钟前
一定accept完成签到 ,获得积分10
1分钟前
1分钟前
鳌小饭完成签到 ,获得积分10
1分钟前
鳌小饭完成签到 ,获得积分10
1分钟前
儒雅的蜜粉完成签到,获得积分10
1分钟前
ying818k完成签到 ,获得积分10
1分钟前
zzzzzx发布了新的文献求助10
1分钟前
hyxiaoren应助zzzzzx采纳,获得10
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4800517
求助须知:如何正确求助?哪些是违规求助? 4119250
关于积分的说明 12743320
捐赠科研通 3850699
什么是DOI,文献DOI怎么找? 2121199
邀请新用户注册赠送积分活动 1143456
关于科研通互助平台的介绍 1033082