TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations

机制(生物学) 反褶积 人工神经网络 人工智能 计算机科学 计算生物学 生物系统 机器学习 生物 算法 物理 量子力学
作者
Qiao Liu,Lei Xie
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:17 (2): e1008653-e1008653 被引量:125
标识
DOI:10.1371/journal.pcbi.1008653
摘要

Drug combinations have demonstrated great potential in cancer treatments. They alleviate drug resistance and improve therapeutic efficacy. The fast-growing number of anti-cancer drugs has caused the experimental investigation of all drug combinations to become costly and time-consuming. Computational techniques can improve the efficiency of drug combination screening. Despite recent advances in applying machine learning to synergistic drug combination prediction, several challenges remain. First, the performance of existing methods is suboptimal. There is still much space for improvement. Second, biological knowledge has not been fully incorporated into the model. Finally, many models are lack interpretability, limiting their clinical applications. To address these challenges, we have developed a knowledge-enabled and self-attention transformer boosted deep learning model, TranSynergy, which improves the performance and interpretability of synergistic drug combination prediction. TranSynergy is designed so that the cellular effect of drug actions can be explicitly modeled through cell-line gene dependency, gene-gene interaction, and genome-wide drug-target interaction. A novel Shapley Additive Gene Set Enrichment Analysis (SA-GSEA) method has been developed to deconvolute genes that contribute to the synergistic drug combination and improve model interpretability. Extensive benchmark studies demonstrate that TranSynergy outperforms the state-of-the-art method, suggesting the potential of mechanism-driven machine learning. Novel pathways that are associated with the synergistic combinations are revealed and supported by experimental evidences. They may provide new insights into identifying biomarkers for precision medicine and discovering new anti-cancer therapies. Several new synergistic drug combinations have been predicted with high confidence for ovarian cancer which has few treatment options. The code is available at https://github.com/qiaoliuhub/drug_combination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinen完成签到,获得积分10
2秒前
3秒前
WSZXQ发布了新的文献求助10
3秒前
weiwei发布了新的文献求助10
3秒前
Lu完成签到 ,获得积分10
4秒前
Leo_Sun完成签到,获得积分10
5秒前
在逃公主许翠花完成签到,获得积分10
6秒前
冰魂应助zhangyulu采纳,获得10
6秒前
道松先生发布了新的文献求助10
7秒前
豆芽完成签到,获得积分10
7秒前
桐桐应助zaozao采纳,获得10
8秒前
瀚泛完成签到,获得积分10
8秒前
FashionBoy应助善良的剑通采纳,获得30
8秒前
天天快乐应助元元采纳,获得10
10秒前
zhenya完成签到,获得积分10
10秒前
SciGPT应助和谐项链采纳,获得10
10秒前
砍柴少年发布了新的文献求助10
11秒前
黑糖珍珠完成签到 ,获得积分10
12秒前
13秒前
兜兜揣满糖完成签到 ,获得积分10
14秒前
晓风发布了新的文献求助10
15秒前
coolkid应助朴素剑心采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
juphen2完成签到,获得积分10
16秒前
aDou完成签到 ,获得积分10
16秒前
道松先生完成签到,获得积分10
17秒前
儒雅谷芹完成签到,获得积分10
18秒前
18秒前
20秒前
天天快乐应助科研小白采纳,获得30
22秒前
安夏完成签到,获得积分10
24秒前
元谷雪应助zhangyulu采纳,获得10
24秒前
24秒前
玛卡巴卡发布了新的文献求助10
24秒前
凶狠的期待完成签到,获得积分10
25秒前
26秒前
nbzhan发布了新的文献求助10
28秒前
背后涵雁发布了新的文献求助10
32秒前
32秒前
33秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862618
求助须知:如何正确求助?哪些是违规求助? 3405159
关于积分的说明 10643298
捐赠科研通 3128526
什么是DOI,文献DOI怎么找? 1725335
邀请新用户注册赠送积分活动 830939
科研通“疑难数据库(出版商)”最低求助积分说明 779502