计算机科学
构造(python库)
领域(数学)
可解释性
情报学
宏
动作(物理)
晋升(国际象棋)
数据科学
人工智能
计算社会学
适应性
管理科学
知识管理
工程类
图书馆学
物理
政治
程序设计语言
法学
纯数学
生物
量子力学
数学
生态学
政治学
作者
Peng Su,Meihua Chen,Yanfei Wang
标识
DOI:10.1177/01655515211061867
摘要
Agent-based model (ABM) is a branch of artificial intelligence. Its specialty is to construct a complex macro-system model by describing the perception, decision, learning and action of micro-agents. This method is widely used in many fields from natural science to social science. We discuss ABM by collecting relevant academic papers which apply to the field of Library and Information Science (LIS). This article systematically reviews how ABM is applied to the LIS field and argues that ABM can provide an exploratory tool with quantifiability, repeatability, interpretability, contingency, adaptability and other types of advantages. Finally, it is pointed out that this method is a research tool worthy of careful exploration.
科研通智能强力驱动
Strongly Powered by AbleSci AI