高尿酸血症
巴比妥酸
Abcg2型
尿酸
有机阴离子转运蛋白1
药理学
犬尿氨酸
化学
流出
内科学
内分泌学
生物化学
运输机
生物
医学
色氨酸
ATP结合盒运输机
氨基酸
基因
作者
Anita C. A. Dankers,Henricus A. M. Mutsaers,Henry Dijkman,Lambertus P. van den Heuvel,Joost G. J. Hoenderop,Fred C.G.J. Sweep,Frans G. M. Rüssel,Rosalinde Masereeuw
标识
DOI:10.1016/j.bbadis.2013.05.002
摘要
Hyperuricemia is related to a variety of pathologies, including chronic kidney disease (CKD). However, the pathophysiological mechanisms underlying disease development are not yet fully elucidated. Here, we studied the effect of hyperuricemia on tryptophan metabolism and the potential role herein of two important uric acid efflux transporters, multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP). Hyperuricemia was induced in mice by treatment with the uricase inhibitor oxonic acid, confirmed by the presence of urate crystals in the urine of treated animals. A transport assay, using membrane vesicles of cells overexpressing the transporters, revealed that uric acid inhibited substrate-specific transport by BCRP at clinically relevant concentrations (calculated IC50 value: 365±13μM), as was previously reported for MRP4. Moreover, we identified kynurenic acid as a novel substrate for MRP4 and BCRP. This finding was corroborated by increased plasma levels of kynurenic acid observed in Mrp4(-/-) (107±19nM; P=0.145) and Bcrp(-/-) mice (133±10nM; P=0.0007) compared to wild type animals (71±11nM). Hyperuricemia was associated with >1.5 fold increase in plasma kynurenine levels in all strains. Moreover, hyperuricemia led to elevated plasma kynurenic acid levels (128±13nM, P=0.005) in wild type mice but did not further increase kynurenic acid levels in knockout mice. Based on our results, we postulate that elevated uric acid levels hamper MRP4 and BCRP functioning, thereby promoting the retention of other potentially toxic substrates, including kynurenic acid, which could contribute to the development of CKD.
科研通智能强力驱动
Strongly Powered by AbleSci AI