Personality-based refinement for sentiment classification in microblog

计算机科学 微博 情绪分析 人格 社会化媒体 人工智能 自然语言处理 万维网 心理学 数据科学 社会心理学
作者
Junjie Lin,Wenji Mao,Daniel Zeng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:132: 204-214 被引量:54
标识
DOI:10.1016/j.knosys.2017.06.031
摘要

Abstract Microblog has become one of the most widely used social media for people to share information and express opinions. As information propagates fast in social network, understanding and analyzing public sentiment implied in user-generated content is beneficial for many fields and has been applied to applications such as social management, business and public security. Most previous work on sentiment analysis makes no distinctions of the tweets by different users and ignores the diverse word use of people. As some sentiment expressions are used by specific groups of people, the corresponding textual sentiment features are often neglected in the analysis process. On the other hand, previous psychological findings have shown that personality influences the ways people write and talk, suggesting that people with same personality traits tend to choose similar sentiment expressions. Inspired by this, in this paper we propose a method to facilitate sentiment classification in microblog based on personality traits. To this end, we first develop a rule-based method to predict users’ personality traits based on the most well-studied personality model, the Big Five model. In order to leverage more effective but not widely used sentiment features, we then extract those features grouped by different personality traits and construct personality-based sentiment classifiers. Moreover, we adopt an ensemble learning strategy to integrate traditional textual feature based and our personality-based sentiment classification. Experimental studies on Chinese microblog dataset show the effectiveness of our method in refining the performance of both the traditional and state-of-the-art sentiment classifiers. Our work is among the first to explicitly explore the role of user's personality in social media analytics and its application in sentiment classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
阿会发布了新的文献求助10
2秒前
3秒前
3秒前
lilei发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
Jerry发布了新的文献求助10
6秒前
今后应助pierresun采纳,获得10
6秒前
6秒前
看看看完成签到,获得积分10
7秒前
司马含卉发布了新的文献求助10
7秒前
alin发布了新的文献求助10
7秒前
令狐梦安发布了新的文献求助10
7秒前
8秒前
yelaikuhun74发布了新的文献求助10
8秒前
8秒前
cjh发布了新的文献求助10
8秒前
chloe777完成签到,获得积分10
8秒前
冰魂应助hebilie采纳,获得10
9秒前
JamesPei应助有机分子笼采纳,获得10
9秒前
贝贝托发布了新的文献求助10
9秒前
pluto应助活泼的觅云采纳,获得10
10秒前
li发布了新的文献求助10
10秒前
隐形曼青应助amanda采纳,获得10
11秒前
12秒前
Eve丶Paopaoxuan应助阿会采纳,获得10
13秒前
CWNU_HAN应助mk_smile采纳,获得30
13秒前
LJ完成签到,获得积分10
14秒前
bingsu108完成签到,获得积分10
15秒前
顺顺科研完成签到 ,获得积分10
16秒前
搜集达人应助hahage采纳,获得10
16秒前
慕青应助研友_Z1xNWn采纳,获得10
16秒前
16秒前
白菜发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775