亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

医学 淋巴结 H&E染色 接收机工作特性 放射科 乳腺癌 深度学习 算法 淋巴 癌症 试验装置 病理 人工智能 内科学 机器学习 染色 计算机科学
作者
Babak Ehteshami Bejnordi,Mitko Veta,Paul Johannes van Diest,Bram van Ginneken,Nico Karssemeijer,Geert Litjens,Jeroen van der Laak,Meyke Hermsen,Quirine F. Manson,Maschenka Balkenhol,Oscar Geessink,Nikolas Stathonikos,Marcory CRF van Dijk,Peter Bult,Francisco Beça,Andrew H. Beck,D. Wang,Aditya Khosla,Rishab Gargeya,Humayun Irshad
出处
期刊:JAMA [American Medical Association]
卷期号:318 (22): 2199-2199 被引量:2860
标识
DOI:10.1001/jama.2017.14585
摘要

Importance

Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.

Objective

Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting.

Design, Setting, and Participants

Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).

Exposures

Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation.

Main Outcomes and Measures

The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.

Results

The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884];P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC).

Conclusions and Relevance

In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ylky完成签到 ,获得积分10
4秒前
田様应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得20
12秒前
qqq完成签到 ,获得积分10
12秒前
善学以致用应助嗯哼哈哈采纳,获得10
20秒前
35秒前
嗯哼哈哈发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
56秒前
科研通AI5应助林林采纳,获得10
1分钟前
南橘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
林林完成签到,获得积分10
2分钟前
2分钟前
morena应助科研通管家采纳,获得10
2分钟前
2分钟前
蛋卷完成签到 ,获得积分10
2分钟前
范六六发布了新的文献求助10
2分钟前
冷静新烟完成签到,获得积分10
2分钟前
诸青梦完成签到 ,获得积分10
3分钟前
3分钟前
LEMONS发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
lhy完成签到,获得积分10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
Murphy完成签到,获得积分10
4分钟前
4分钟前
阿姊完成签到 ,获得积分10
4分钟前
借一颗糖发布了新的文献求助10
4分钟前
小王爱看文献完成签到 ,获得积分10
4分钟前
借一颗糖完成签到,获得积分10
5分钟前
科研通AI2S应助辰昜采纳,获得10
5分钟前
努力努力再努力完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科目三应助coldbee采纳,获得10
5分钟前
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4242452
求助须知:如何正确求助?哪些是违规求助? 3775960
关于积分的说明 11856262
捐赠科研通 3430701
什么是DOI,文献DOI怎么找? 1882784
邀请新用户注册赠送积分活动 934828
科研通“疑难数据库(出版商)”最低求助积分说明 841227