脑磁图
计算机科学
神经解码
卷积神经网络
解码方法
人工神经网络
人工智能
脑-机接口
分类器(UML)
脑电图
模式识别(心理学)
语音识别
机器学习
神经科学
心理学
算法
作者
Ivan Zubarev,Rasmus Zetter,Hanna-Leena Halme,Lauri Parkkonen
出处
期刊:NeuroImage
[Elsevier BV]
日期:2019-05-04
卷期号:197: 425-434
被引量:50
标识
DOI:10.1016/j.neuroimage.2019.04.068
摘要
We introduce two Convolutional Neural Network (CNN) classifiers optimized for inferring brain states from magnetoencephalographic (MEG) measurements. Network design follows a generative model of the electromagnetic (EEG and MEG) brain signals allowing explorative analysis of neural sources informing classification. The proposed networks outperform traditional classifiers as well as more complex neural networks when decoding evoked and induced responses to different stimuli across subjects. Importantly, these models can successfully generalize to new subjects in real-time classification enabling more efficient brain–computer interfaces (BCI).
科研通智能强力驱动
Strongly Powered by AbleSci AI