4-硝基喹啉1-氧化物
致癌物
活性氧
超氧化物
化学
谷胱甘肽
过氧化氢
遗传毒性
DNA损伤
生物化学
细胞内
过氧化氢酶
加合物
分子生物学
激进的
诱变剂
氧化应激
DNA
毒性
生物
癌变
酶
有机化学
基因
作者
Yaeno Arima,Chikako Nishigori,Tōru Takeuchi,Shigenori Oka,Kanehisa Morimoto,Atsushi Utani,Yoshiki Miyachi
标识
DOI:10.1093/toxsci/kfj161
摘要
4-Nitroquinoline 1-oxide (4NQO) is thought to elicit its carcinogenicity by producing DNA adducts after being metabolized to 4-hydroxyaminoquinoline 1-oxide, which forms 8-hydroxydeoxyguanosine (8OHdG), oxidative damage. To determine whether reactive oxygen species (ROS) are involved in the generation of 8OHdG by 4NQO, we used high-performance liquid chromatography and immunohistochemistry to measure the levels of 8OHdG in normal human fibroblasts treated with 4NQO. The extent of ROS induced by 4NQO was determined by using fluorescent probes to detect ROS, electron paramagnetic resonance spectrometry using a cell-free system, and measurement of intracellular glutathione (GSH) levels. In fibroblasts, 4NQO dose dependently increased 8OHdG levels. Hydrogen peroxide (H2O2) and superoxide were detected in cells treated with 4NQO by using dichlorofluorescin diacetate and hydroethidine, respectively. The addition of catalase to culture medium reduced 8OHdG levels and the intensity of dichlorofluorescin fluorescence, while 4NQO generated hydroxyl radicals in the cell-free system. These findings suggest that 4NQO treatment leads to formation of superoxide, H2O2, and hydroxyl radicals, resulting in the production of a substantial amount of 8OHdG in DNA. Neither the level of 8OHdG nor that of GSH had returned to the basal level 24 h after removal of 4NQO even at a concentration as low as 1μM. Our results suggest that generation of ROS and depletion of GSH in cells are also important factors for the generation of 8OHdG by 4NQO. This paper describes practical and sensitive ways to detect ROS and 8OHdG and discusses a new functional pathway to elicit genotoxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI