催化作用
氧化剂
纳米颗粒
奥斯特瓦尔德成熟
Atom(片上系统)
材料科学
金属
化学物理
纳米技术
动力学蒙特卡罗方法
人口
化学工程
化学
蒙特卡罗方法
冶金
有机化学
嵌入式系统
人口学
社会学
工程类
统计
计算机科学
数学
作者
Matteo Farnesi Camellone,Filip Dvořák,Mykhailo Vorokhta,Andrii Tovt,Ivan Khalakhan,Viktor Johánek,Tomáš Škála,Iva Matolı́nová,Stefano Fabris,Josef Mysliveček
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2022-04-08
卷期号:12 (9): 4859-4871
被引量:29
标识
DOI:10.1021/acscatal.2c00291
摘要
Single-atom catalysts represent an essential and ever-growing family of heterogeneous catalysts. Recent studies indicate that besides the valuable catalytic properties provided by single-atom active sites, the presence of single-atom sites on the catalyst substrates may significantly influence the population of supported metal nanoparticles coexisting with metal single atoms. Treatment of ceria-based single-atom catalysts in oxidizing or reducing atmospheres was proven to provide a precise experimental control of the size of supported Pt nanoparticles and, correspondingly, a control of catalyst activity and stability. Based on dedicated surface science experiments, ab initio calculations, and kinetic Monte Carlo simulations, we demonstrate that the morphology of Pt nanoparticle population on ceria surface is a result of a competition for Pt atoms between Pt single-atom sites and Pt nanoparticles. In an oxidizing atmosphere, Pt single-atom sites provide strong bonding to single Pt atoms and Pt nanoparticles shrink. In reducing atmosphere, Pt single-atom sites are depopulated and Pt nanoparticles grow. We formulate a generic model of Pt redispersion and coarsening on ceria substrates. Our model provides a unified atomic-level explanation for a variety of metal nanoparticle dynamic processes observed in single-atom catalysts under stationary or alternating oxidizing/reducing atmospheres and allows us to classify the conditions under which nanoparticle ensembles on single-atom catalyst substrates can be stabilized against Ostwald ripening.
科研通智能强力驱动
Strongly Powered by AbleSci AI