Improved U-Net3+ with stage residual for brain tumor segmentation

规范化(社会学) 计算机科学 残余物 分割 编码器 人工智能 模式识别(心理学) 特征(语言学) 源代码 特征提取 算法 人类学 语言学 操作系统 哲学 社会学
作者
Chuanbo Qin,Yujie Wu,Wenbin Liao,Junying Zeng,Shufen Liang,Xiaozhi Zhang
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:22 (1) 被引量:14
标识
DOI:10.1186/s12880-022-00738-0
摘要

Abstract Background For the encoding part of U-Net3+,the ability of brain tumor feature extraction is insufficient, as a result, the features can not be fused well during up-sampling, and the accuracy of segmentation will reduce. Methods In this study, we put forward an improved U-Net3+ segmentation network based on stage residual. In the encoder part, the encoder based on the stage residual structure is used to solve the vanishing gradient problem caused by the increasing in network depth, and enhances the feature extraction ability of the encoder which is instrumental in full feature fusion when up-sampling in the network. What’s more, we replaced batch normalization (BN) layer with filter response normalization (FRN) layer to eliminate batch size impact on the network. Based on the improved U-Net3+ two-dimensional (2D) model with stage residual, IResUnet3+ three-dimensional (3D) model is constructed. We propose appropriate methods to deal with 3D data, which achieve accurate segmentation of the 3D network. Results The experimental results showed that: the sensitivity of WT, TC, and ET increased by 1.34%, 4.6%, and 8.44%, respectively. And the Dice coefficients of ET and WT were further increased by 3.43% and 1.03%, respectively. To facilitate further research, source code can be found at: https://github.com/YuOnlyLookOne/IResUnet3Plus . Conclusion The improved network has a significant improvement in the segmentation task of the brain tumor BraTS2018 dataset, compared with the classical networks u-net, v-net, resunet and u-net3+, the proposed network has smaller parameters and significantly improved accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜书易完成签到 ,获得积分10
刚刚
街道办事部完成签到,获得积分10
1秒前
饱满蚂蚁完成签到,获得积分10
1秒前
2秒前
6rkuttsmdt完成签到,获得积分10
3秒前
斯文败类应助YY采纳,获得10
3秒前
QuJiahao发布了新的文献求助10
8秒前
mr_beard完成签到 ,获得积分10
14秒前
16秒前
古古怪界丶黑大帅完成签到,获得积分10
16秒前
18秒前
初余发布了新的文献求助10
22秒前
小白应助cx111采纳,获得10
25秒前
科研通AI5应助QuJiahao采纳,获得10
26秒前
L_完成签到,获得积分10
27秒前
27秒前
lifeup发布了新的文献求助10
28秒前
慕新完成签到,获得积分0
29秒前
三虎科研发布了新的文献求助10
32秒前
1021完成签到,获得积分10
33秒前
34秒前
35秒前
自由橘子完成签到 ,获得积分10
35秒前
不发一区不改名完成签到 ,获得积分10
35秒前
36秒前
38秒前
38秒前
Xieyusen发布了新的文献求助10
39秒前
默默的映天给默默的映天的求助进行了留言
39秒前
40秒前
shihangZhang发布了新的文献求助10
40秒前
40秒前
kevinwang发布了新的文献求助10
41秒前
赘婿应助科研通管家采纳,获得10
41秒前
Jasper应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
所所应助科研通管家采纳,获得10
41秒前
桐桐应助科研通管家采纳,获得10
41秒前
科研通AI5应助自信筮采纳,获得10
41秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843815
求助须知:如何正确求助?哪些是违规求助? 3386203
关于积分的说明 10544092
捐赠科研通 3106883
什么是DOI,文献DOI怎么找? 1711245
邀请新用户注册赠送积分活动 824031
科研通“疑难数据库(出版商)”最低求助积分说明 774409