The placenta: epigenetic insights into trophoblast developmental models of a generation-bridging organ with long-lasting impact on lifelong health

胎盘形成 胎盘 滋养层 生物 表观基因组 表观遗传学 干细胞 胚胎干细胞 生物信息学 胎儿 怀孕 神经科学 生理学 细胞生物学 DNA甲基化 遗传学 基因 基因表达
作者
Myriam Hemberger,Wendy Dean
出处
期刊:Physiological Reviews [American Physiological Society]
卷期号:103 (4): 2523-2560 被引量:12
标识
DOI:10.1152/physrev.00001.2023
摘要

The placenta is a unique organ system that functionally combines both maternal and fetal cell types with distinct lineage origins. Normal placentation is critical for developmental progression and reproductive success. Although the placenta is best known for its nutrient supply function to the fetus, genetic experiments in mice highlight that the placenta is also pivotal for directing the proper formation of specific fetal organs. These roles underscore the importance of the placenta for pregnancy outcome and lifelong health span, which makes it essential to better understand the molecular processes governing placental development and function and to find adequate models to study it. In this review, we provide an overview of placental development and highlight the instructional role of the epigenome in dictating cell fate decisions specifically in the placental trophoblast cell lineage. We then focus on recent advances in exploring stem cell and organoid models reflecting the feto-maternal interface in mice and humans that provide much-improved tools to study events in early development. We discuss stem cells derived from the placenta as well as those artificially induced to resemble the placenta, and how they can be combined with embryonic stem cells and with endometrial cell types of the uterus to reconstitute the early implantation site. We then allude to the exciting prospects of how these models can be harnessed in biomedicine to enhance our understanding of the pathological underpinnings of pregnancy complications in a patient-specific manner, and ultimately to facilitate therapeutic approaches of tissue- and organ-based regenerative medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吴所畏惧发布了新的文献求助30
1秒前
jonasas发布了新的文献求助10
1秒前
老实的烤鸡完成签到,获得积分10
1秒前
汪春荣完成签到 ,获得积分10
1秒前
李双兔完成签到 ,获得积分10
1秒前
2秒前
听话的代芙完成签到 ,获得积分10
2秒前
YANGTIAN发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
Jasper应助土拨鼠采纳,获得10
3秒前
4秒前
4秒前
叶落花开完成签到,获得积分10
4秒前
4秒前
李健应助欣喜代秋采纳,获得10
4秒前
weeson完成签到,获得积分10
5秒前
FK7发布了新的文献求助10
6秒前
刘哈哈发布了新的文献求助10
6秒前
科研通AI5应助zizilu采纳,获得10
6秒前
彭于晏应助研友_5ZlN6L采纳,获得10
7秒前
王丹靖发布了新的文献求助10
7秒前
华仔应助旋风大角牛采纳,获得10
7秒前
蔡佰航发布了新的文献求助10
7秒前
7秒前
科研小白完成签到,获得积分10
8秒前
8秒前
白日兰完成签到 ,获得积分10
8秒前
萌萌发布了新的文献求助10
8秒前
Eric发布了新的文献求助60
8秒前
8秒前
8秒前
星辰大海应助4444l采纳,获得10
8秒前
8秒前
yanyanyan完成签到,获得积分10
8秒前
缓慢的博发布了新的文献求助10
9秒前
曲奇吐司完成签到,获得积分10
9秒前
bc应助氢氧化钠Li采纳,获得20
10秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Polymer handbook 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The CRISPR–Cas system in clinical strains of Acinetobacter baumannii: an in-silico analysis 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828871
求助须知:如何正确求助?哪些是违规求助? 3371241
关于积分的说明 10467141
捐赠科研通 3091144
什么是DOI,文献DOI怎么找? 1700753
邀请新用户注册赠送积分活动 817998
科研通“疑难数据库(出版商)”最低求助积分说明 770645