异核分子
双原子分子
催化作用
材料科学
化学工程
化学物理
纳米技术
物理化学
工程物理
物理
核磁共振
有机化学
核磁共振波谱
化学
分子
工程类
作者
Yifei Wang,Xuedi Sun,Hao Wang,Yi‐Yang Wu,Peiyang Duan,Yuanhe Sun,Daming Zhu,Jingyu Sun,Meng Liu,Yanbiao Liu
标识
DOI:10.1002/adfm.202518051
摘要
Abstract Dual‐atom catalysts (DACs) with atomic precision remain pivotal for steering peroxymonosulfate (PMS) activation pathways, yet their development is hindered by synthetic universality gaps and elusive bimetallic synergy in governing reactive oxygen species (ROS) selectivity. Herein, a salt‐confinement strategy enables universal synthesis of cobalt‐based heteronuclear diatomic catalysts (CoM‐NC, M = Fe, Cu, Mn, Ni) anchored on nitrogen‐doped carbon (NC), where electronic‐structure engineering unlocks switchable ROS generation. Crucially, heterometal engineering facilitates precise electronic structure modulation of the CoM‐NC active centers, achieving adaptive control over selective PMS activation. The intermediate electronegativity induces ultrastrong Co‐Fe coupling (ICOHP = −0.97 eV for Fe─O bonds—1.2–1.9 fold stronger than Co─O in other CoM‐NC), reducing singlet oxygen ( 1 O 2 ) formation barriers by 28–78% and achieving near‐exclusive selectivity (>99%) toward electron‐rich pollutants oxidation. Among all tested catalysts, the CoFe–NC demonstrates superior performance, achieving a k obs of 1.54 min −1 for carbamazepine degradation—over 11‐fold higher than that of CoNi–NC. This work uncovers the electronic‐level synergy mechanism dictating selective 1 O 2 generation in DACs/PMS systems, providing critical insights for the rational design of high‐performance diatomic catalysts for advanced oxidation processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI