Greenhouse gas emissions from Mexican inland waters: first estimation and uncertainty using an upscaling approach

温室气体 环境科学 估计 水文学(农业) 地质学 海洋学 工程类 系统工程 岩土工程
作者
Salvador Sánchez‐Carrillo,Javier Alcocer,Mariana Vargas-Sánchez,Ismael Soria-Reinoso,Erika M. Rivera-Herrera,Daniela Cortés‐Guzmán,Daniel Cuevas-Lara,Andrea P. Guzmán-Arias,Martín Merino‐Ibarra,Luis A. Oseguera
出处
期刊:Inland Waters [Taylor & Francis]
卷期号:12 (2): 294-310 被引量:7
标识
DOI:10.1080/20442041.2021.2009310
摘要

The traditional upscaling approach to greenhouse gas (GHG) emission estimates of inland waters is imprecise, but more precise methods based on environmental drivers are a longstanding challenge. Mexico lacks GHG emission estimates for its inland waters, and only sparse but scientifically validated information is available. This study provides the first GHG emission estimates from Mexican inland waters using 4275 GHG flux measurements from 26 distinctive waterbodies and one local and another global surface area dataset (INEGI and HydroLAKES). GHG emission factors were calculated and subsequently upscaled to estimate total national GHG emissions from the inland waters and compare to other emission measures based on mean global emission factors or size-productivity weighted (SPW) models. Mean (standard error) annual fluxes from all inland waters were 2.2 (5.3) kg CO2 m−2 yr−1, 0.6 (1.14) kg CH4 m−2 yr−1, and 1.0 × 10−3 (6.0 × 10−4) kg N2O m−2 yr−1. Estimates for natural waterbodies are annual average release rates between 74 (87) and 139 (163.23) Tg CO2eq while artificial waterbodies reach between 32 (2) and 21 (21) Tg CO2eq according to INEGI and HydroLAKES datasets, respectively. Considerable uncertainty was determined in the calculated mean emission factor, mostly for anthropogenic emissions. Waterbody area and chlorophyll a concentration were used as proxies to model CO2 and CH4 fluxes through regression analysis. According to SPW and IPCC models, computed mean annual CH4 emission factors were close to our estimates and exhibited a strong influence from eutrophication. In a likely scenario of increased eutrophication in Mexico, an increase in total net emissions from inland waters could be expected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助兴奋的蜡烛采纳,获得10
刚刚
1秒前
1秒前
zhang发布了新的文献求助10
2秒前
jiesenya发布了新的文献求助30
2秒前
科研通AI5应助WANGCHU采纳,获得10
3秒前
一一应助Zyan采纳,获得10
4秒前
白羊不白发布了新的文献求助10
4秒前
5秒前
Disguise完成签到,获得积分10
5秒前
小旭仔完成签到 ,获得积分10
6秒前
彩虹糖发布了新的文献求助10
7秒前
英俊白莲发布了新的文献求助10
9秒前
科研通AI2S应助zengchunhua采纳,获得50
9秒前
Uni应助彩虹糖采纳,获得10
13秒前
时尚的闭月完成签到,获得积分10
16秒前
17秒前
星辰大海应助daD采纳,获得10
19秒前
zxb发布了新的文献求助10
19秒前
dingding完成签到,获得积分10
21秒前
lvlvlvsh发布了新的文献求助10
23秒前
科研通AI5应助月湖采纳,获得10
24秒前
24秒前
25秒前
26秒前
27秒前
28秒前
zengchunhua发布了新的文献求助50
29秒前
30秒前
30秒前
li发布了新的文献求助10
30秒前
daD发布了新的文献求助10
30秒前
32秒前
skyla1003完成签到 ,获得积分10
32秒前
32秒前
muum发布了新的文献求助10
33秒前
34秒前
浩浩桑发布了新的文献求助10
35秒前
daD完成签到,获得积分10
37秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829306
求助须知:如何正确求助?哪些是违规求助? 3371976
关于积分的说明 10470185
捐赠科研通 3091557
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770805