Self supervised contrastive learning for digital histopathology

计算机科学 人工智能 机器学习 任务(项目管理) Boosting(机器学习) 监督学习 模式识别(心理学) 深度学习 人工神经网络 经济 管理
作者
Ozan Ciga,Tengteng Xu,Anne L. Martel
出处
期刊:Machine learning with applications [Elsevier BV]
卷期号:7: 100198-100198 被引量:50
标识
DOI:10.1016/j.mlwa.2021.100198
摘要

Unsupervised learning has been a long-standing goal of machine learning and is especially important for medical image analysis, where the learning can compensate for the scarcity of labeled datasets. A promising subclass of unsupervised learning is self-supervised learning, which aims to learn salient features using the raw input as the learning signal. In this work, we tackle the issue of learning domain-specific features without any supervision to improve multiple task performances that are of interest to the digital histopathology community. We apply a contrastive self-supervised learning method to digital histopathology by collecting and pretraining on 57 histopathology datasets without any labels. We find that combining multiple multi-organ datasets with different types of staining and resolution properties improves the quality of the learned features. Furthermore, we find using more images for pretraining leads to a better performance in multiple downstream tasks, albeit there are diminishing returns as more unlabeled images are incorporated into the pretraining. Linear classifiers trained on top of the learned features show that networks pretrained on digital histopathology datasets perform better than ImageNet pretrained networks, boosting task performances by more than 28% in F1 scores on average. Interestingly, we did not observe a consistent correlation between the pretraining dataset site or the organ versus the downstream task (e.g., pretraining with only breast images does not necessarily lead to a superior downstream task performance for breast-related tasks). These findings may also be useful when applying newer contrastive techniques to histopathology data. Pretrained PyTorch models are made publicly available at https://github.com/ozanciga/self-supervised-histopathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想睡觉的小笼包完成签到 ,获得积分10
1秒前
lilianan发布了新的文献求助10
2秒前
彭于晏应助北沐采纳,获得10
2秒前
Lucas应助悦耳的盼芙采纳,获得10
3秒前
3秒前
慕青应助pignai采纳,获得10
6秒前
Yu完成签到,获得积分20
7秒前
CD发布了新的文献求助10
8秒前
水本无忧87完成签到,获得积分10
9秒前
luanzhaohui发布了新的文献求助30
10秒前
13秒前
孙泉完成签到,获得积分10
14秒前
斯文败类应助科研通管家采纳,获得10
15秒前
凌志应助科研通管家采纳,获得10
15秒前
小二郎应助王军茹采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
Bizibili完成签到,获得积分10
16秒前
17秒前
祝睿彦发布了新的文献求助10
18秒前
19秒前
科研通AI5应助光_sun采纳,获得10
20秒前
夜雨声烦完成签到,获得积分10
21秒前
核桃应助sonlony采纳,获得10
22秒前
23秒前
Leoling完成签到,获得积分20
24秒前
深情安青应助lynnnnnn采纳,获得10
26秒前
27秒前
沈一二发布了新的文献求助10
27秒前
27秒前
steven完成签到 ,获得积分10
29秒前
29秒前
Leoling发布了新的文献求助10
29秒前
29秒前
31秒前
huangbing123发布了新的文献求助10
31秒前
31秒前
李健的小迷弟应助卷毛采纳,获得10
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4166307
求助须知:如何正确求助?哪些是违规求助? 3701961
关于积分的说明 11686975
捐赠科研通 3390406
什么是DOI,文献DOI怎么找? 1859307
邀请新用户注册赠送积分活动 919641
科研通“疑难数据库(出版商)”最低求助积分说明 832328