Self supervised contrastive learning for digital histopathology

计算机科学 人工智能 机器学习 任务(项目管理) Boosting(机器学习) 监督学习 模式识别(心理学) 深度学习 人工神经网络 管理 经济
作者
Ozan Ciga,Tengteng Xu,Anne L. Martel
出处
期刊:Machine learning with applications [Elsevier BV]
卷期号:7: 100198-100198 被引量:50
标识
DOI:10.1016/j.mlwa.2021.100198
摘要

Unsupervised learning has been a long-standing goal of machine learning and is especially important for medical image analysis, where the learning can compensate for the scarcity of labeled datasets. A promising subclass of unsupervised learning is self-supervised learning, which aims to learn salient features using the raw input as the learning signal. In this work, we tackle the issue of learning domain-specific features without any supervision to improve multiple task performances that are of interest to the digital histopathology community. We apply a contrastive self-supervised learning method to digital histopathology by collecting and pretraining on 57 histopathology datasets without any labels. We find that combining multiple multi-organ datasets with different types of staining and resolution properties improves the quality of the learned features. Furthermore, we find using more images for pretraining leads to a better performance in multiple downstream tasks, albeit there are diminishing returns as more unlabeled images are incorporated into the pretraining. Linear classifiers trained on top of the learned features show that networks pretrained on digital histopathology datasets perform better than ImageNet pretrained networks, boosting task performances by more than 28% in F1 scores on average. Interestingly, we did not observe a consistent correlation between the pretraining dataset site or the organ versus the downstream task (e.g., pretraining with only breast images does not necessarily lead to a superior downstream task performance for breast-related tasks). These findings may also be useful when applying newer contrastive techniques to histopathology data. Pretrained PyTorch models are made publicly available at https://github.com/ozanciga/self-supervised-histopathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助203采纳,获得10
1秒前
1秒前
韩思凝完成签到,获得积分10
2秒前
3秒前
andrele应助刘大夫采纳,获得10
3秒前
4秒前
4秒前
飘逸的天菱完成签到,获得积分10
6秒前
kuku发布了新的文献求助10
7秒前
candy完成签到 ,获得积分10
8秒前
球球的铲屎官完成签到,获得积分10
8秒前
8秒前
桐桐应助chichi采纳,获得10
9秒前
9秒前
夜莺应助是帆帆吖采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
zzzzzz完成签到,获得积分10
10秒前
swy关闭了swy文献求助
10秒前
小李李完成签到,获得积分10
10秒前
11秒前
orixero应助董羽佳采纳,获得10
11秒前
11秒前
11秒前
12秒前
ttttt完成签到,获得积分20
13秒前
科研通AI5应助abc采纳,获得10
14秒前
大白发布了新的文献求助10
15秒前
WWW发布了新的文献求助10
15秒前
203发布了新的文献求助10
15秒前
15秒前
wang发布了新的文献求助10
15秒前
miumiu发布了新的文献求助10
16秒前
栗子发布了新的文献求助10
16秒前
zy完成签到 ,获得积分10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
20秒前
思源应助qikuo采纳,获得10
21秒前
mimimi发布了新的文献求助10
21秒前
Koalas应助船锚在玉龙雪山采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051061
求助须知:如何正确求助?哪些是违规求助? 4278621
关于积分的说明 13337056
捐赠科研通 4093748
什么是DOI,文献DOI怎么找? 2240502
邀请新用户注册赠送积分活动 1247091
关于科研通互助平台的介绍 1176104