An Autoencoder Framework With Attention Mechanism for Cross-Domain Recommendation

自编码 计算机科学 推荐系统 领域(数学分析) 人工智能 保险丝(电气) 冷启动(汽车) 机器学习 机制(生物学) 矩阵分解 深度学习 情报检索 数据挖掘 认识论 电气工程 物理 工程类 数学分析 哲学 航空航天工程 量子力学 特征向量 数学
作者
Shi-Ting Zhong,Ling Huang,Chang‐Dong Wang,Jianhuang Lai,Philip S. Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (6): 5229-5241 被引量:41
标识
DOI:10.1109/tcyb.2020.3029002
摘要

In recent years, the recommender system has been widely used in online platforms, which can extract useful information from giant volumes of data and recommend suitable items to the user according to user preferences. However, the recommender system usually suffers from sparsity and cold-start problems. Cross-domain recommendation, as a particular example of transfer learning, has been used to solve the aforementioned problems. However, many existing cross-domain recommendation approaches are based on matrix factorization, which can only learn the shallow and linear characteristics of users and items. Therefore, in this article, we propose a novel autoencoder framework with an attention mechanism (AAM) for cross-domain recommendation, which can transfer and fuse information between different domains and make a more accurate rating prediction. The main idea of the proposed framework lies in utilizing autoencoder, multilayer perceptron, and self-attention to extract user and item features, learn the user and item-latent factors, and fuse the user-latent factors from different domains, respectively. In addition, to learn the affinity of the user-latent factors between different domains in a multiaspect level, we also strengthen the self-attention mechanism by using multihead self-attention and propose AAM++. Experiments conducted on two real-world datasets empirically demonstrate that our proposed methods outperform the state-of-the-art methods in cross-domain recommendation and AAM++ performs better than AAM on sparse and large-scale datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好的昂完成签到,获得积分10
刚刚
xzx发布了新的文献求助10
1秒前
Cynthia完成签到 ,获得积分10
1秒前
沉默洋葱完成签到,获得积分10
2秒前
GU完成签到,获得积分10
2秒前
黎明森发布了新的文献求助20
2秒前
欢喜可愁完成签到,获得积分10
3秒前
Akim应助渤海少年采纳,获得10
4秒前
4秒前
蛀牙牙完成签到,获得积分10
5秒前
斯文跳跳糖完成签到 ,获得积分10
5秒前
lsy完成签到,获得积分10
6秒前
7秒前
协和_子鱼完成签到,获得积分10
7秒前
坦率大米发布了新的文献求助10
9秒前
无限的含羞草完成签到,获得积分10
11秒前
Wang完成签到,获得积分10
11秒前
CCC发布了新的文献求助10
12秒前
鲤鱼青雪完成签到,获得积分10
14秒前
荔枝的油饼iKun完成签到,获得积分10
14秒前
yi完成签到 ,获得积分10
15秒前
恃6完成签到,获得积分20
16秒前
华理附院孙文博完成签到 ,获得积分10
18秒前
寒冷荧荧完成签到,获得积分10
18秒前
万能图书馆应助YangyangLiu采纳,获得10
20秒前
蓝色条纹衫完成签到 ,获得积分10
20秒前
penghui完成签到,获得积分10
21秒前
qiangxu完成签到,获得积分10
21秒前
可爱的函函应助恃6采纳,获得10
21秒前
511完成签到 ,获得积分10
22秒前
诺奇完成签到,获得积分10
22秒前
xzx完成签到 ,获得积分10
23秒前
压缩完成签到 ,获得积分10
23秒前
cathy-w完成签到,获得积分10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
CCC完成签到,获得积分10
25秒前
坚定尔蓝完成签到,获得积分10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795639
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301387
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805488
科研通“疑难数据库(出版商)”最低求助积分说明 762626