A Computer Vision-Based Intelligent Fish Feeding System Using Deep Learning Techniques for Aquaculture

水产养殖 人工智能 深度学习 计算机科学 水下 质量(理念) 商业鱼饲料 水质 环境科学 渔业 计算机视觉 生态学 生物 地理 考古 哲学 认识论
作者
Wu-Chih Hu,Liang-Bi Chen,Bo-Kai Huang,Hong-Ming Lin
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (7): 7185-7194 被引量:61
标识
DOI:10.1109/jsen.2022.3151777
摘要

The decisions made regarding traditional fish feeding systems mainly depend on experience and simple time control. Most previous works have focused on image-based analysis of the leftover feed at the bottom of the pond to determine whether to continue or to stop feeding. However, the feasibility of such a method in an actual outdoor aquaculture pond is low. The main reason for this is that real outdoor aquaculture ponds have turbid water quality, small feed targets, interference from intense fish activity, overlapping images of fish and feed, etc. Therefore, image-based recognition is not easy to implement in actual outdoor aquaculture. To overcome this problem, this article proposes an automatic fish feeding system based on deep learning computer vision technology. In contrast to traditional computer-vision-based systems for recognizing fish feed underwater, the proposed system uses deep learning technology to recognize the size of the waves caused by fish eating feed to determine whether to continue or to stop feeding. Furthermore, several water quality sensors are adopted to assist in feeding decisions. As a result, the proposed system uses deep learning technology to recognize the size of the water waves caused by fish eating feed to determine whether to continue to cast feed or to stop feeding. Experimental results show that an accuracy of up to 93.2% can be achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
踏雪飞鸿完成签到,获得积分10
1秒前
小莫完成签到 ,获得积分10
3秒前
4秒前
LMZ发布了新的文献求助10
4秒前
活力数据线完成签到,获得积分10
7秒前
dd完成签到 ,获得积分10
8秒前
爱吃火锅的lulu完成签到 ,获得积分10
8秒前
领导范儿应助小林采纳,获得10
9秒前
9秒前
林先生完成签到,获得积分10
10秒前
李李05发布了新的文献求助10
10秒前
muyassar完成签到,获得积分10
11秒前
文小杰完成签到,获得积分10
11秒前
科目三应助LMZ采纳,获得10
12秒前
居崽完成签到 ,获得积分10
12秒前
小白完成签到,获得积分10
13秒前
淡定碧玉完成签到 ,获得积分10
13秒前
13秒前
kento完成签到,获得积分0
14秒前
科研女仆完成签到 ,获得积分10
14秒前
暴富完成签到,获得积分10
17秒前
zbclzf完成签到,获得积分10
18秒前
zhugao完成签到,获得积分10
18秒前
K珑完成签到,获得积分10
19秒前
Singularity应助阿巴阿巴采纳,获得10
19秒前
lala完成签到,获得积分10
19秒前
大胆的龙猫完成签到,获得积分20
19秒前
森宝完成签到,获得积分10
20秒前
馒头完成签到,获得积分10
20秒前
冰魂应助科研通管家采纳,获得20
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
FelixChen应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
无餍应助科研通管家采纳,获得10
22秒前
FelixChen应助科研通管家采纳,获得10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843337
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541174
捐赠科研通 3106236
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774308