不可见的
数学
可见的
观察员(物理)
不变(物理)
国家(计算机科学)
状态向量
复平面
控制理论(社会学)
集合(抽象数据类型)
状态空间
应用数学
算法
数学分析
控制(管理)
计算机科学
统计
人工智能
计量经济学
物理
程序设计语言
经典力学
量子力学
数学物理
作者
Francisco Javier Bejarano,Leonid Fridman,Alexander S. Poznyak
摘要
The concept of strong detectability and its relation with the concept of invariant zeros is reviewed. For strongly detectable systems (which includes the strongly observable systems), it is proposed a hierarchical design of a robust observer whose trajectories converge to those of the original state vector. Furthermore, it is shown that neither left invertibility is a sufficient condition nor strong detectability is a necessary condition to estimate the unknown inputs. It is shown that the necessary and sufficient condition for estimating the unknown inputs is that the set of the invariant zeros that do not belong to the set of unobservable modes be within the interior of the left half plane of the complex space. This shows that the unknown inputs could be estimated even if it is impossible to estimate the entire state vector of the system. Two numerical examples illustrate the effectiveness of the proposed estimation schemes.
科研通智能强力驱动
Strongly Powered by AbleSci AI