间充质干细胞
细胞生物学
剪应力
细胞外基质
机械转化
干细胞
基质(化学分析)
生物
化学
机械
物理
色谱法
作者
Guobao Chen,Yonggang Lv,Pan Guo,Chongwen Lin,Xiaomei Zhang,Li Yang,Zhiling Xu
标识
DOI:10.2174/1574888x11308040007
摘要
Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.
科研通智能强力驱动
Strongly Powered by AbleSci AI