清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Digital twin-assisted dual transfer: A novel information-model adaptation method for rolling bearing fault diagnosis

计算机科学 断层(地质) 方位(导航) 学习迁移 过程(计算) 信息传递 对偶(语法数字) 适应(眼睛) 数据挖掘 人工智能 文学类 地质学 艺术 物理 地震学 光学 操作系统 电信
作者
Zixian Li,Xiaoxi Ding,Zhenzhen Song,Liming Wang,Bo Qin,Wenbin Huang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:106: 102271-102271 被引量:64
标识
DOI:10.1016/j.inffus.2024.102271
摘要

Rolling bearing fault diagnosis is of great importance to the safety management of mechanical equipment. The scarcity of labelled fault data makes it difficult to adequately perform the training process of intelligent diagnosis models, and this will result in these intelligent models not being effectively and widely used in practice. Although some recent studies have verified that the addition of dynamic model response to the training process will greatly improve the ability of the model with low cost and high efficiency, it is still stuck in poor effect caused by large information distribution difference between dynamic model response and real measured data. Focusing on this issue, a digital twin-assisted dual transfer (DTa-DT) method with information and model adaptation was proposed for rolling bearing fault diagnosis. Different from the traditional digital-analogue driven transfer methods, the proposed DTa-DT aims to simultaneously synthesize data information transfer and feature model transfer together with domain transfer error minimization. In particular, it should be noted that the DTa-DT architecture consists of a dual transfer learning process, including digital twin-driven information transfer (DTd-IT) and digital-analogue-driven model transfer (DAd-MT), where the information is collaborated with the model to improve the integrated transfer diagnosis effect under sampling. On one aspect, with the employment of bearing dynamic model responses, DTd-IT is innovatively designed to establish the transfer of dynamic information and measured information. The information distribution difference between these twin data and real measured data is effetely adjusted with the introduced actual inference components, where the twin data with low information distribution difference can be well fusion generated by the information transfer digital twin (ITDT) model. On the other aspect, considering the truth that there are still small sample cases of real measured data and information distribution differences will affect the quality of the twin data, a digital-analogue driven model transfer (DAd-MT) method is further proposed, where the deep branch transfer network (DBTN) model with improved convolutional neural network (CNN) is used to achieve an accurate fault diagnosis effect with the help of digital twin data. Experiments and wear analysis verified that the proposed DTa-DT can significantly reduce the distribution difference between the dynamic model response and the real measured data, thus achieving low-cost and efficient rolling bearing transfer diagnosis compared to other ten state-of-the-art deep learning models. It can be predicted that the proposed dual transfer architecture provides more opportunities for the practical application of intelligent fault diagnosis under small sample sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hillson完成签到,获得积分10
14秒前
17秒前
21秒前
22秒前
炫饭仙女完成签到,获得积分20
23秒前
炫饭仙女发布了新的文献求助10
27秒前
IMxYang完成签到,获得积分10
28秒前
36秒前
干净怀寒发布了新的文献求助10
37秒前
干净怀寒完成签到,获得积分10
46秒前
山是山三十三完成签到 ,获得积分10
1分钟前
1分钟前
睡眠不足发布了新的文献求助10
1分钟前
睡眠不足完成签到,获得积分10
1分钟前
吉吉国王完成签到,获得积分10
1分钟前
1分钟前
Rebeccaiscute完成签到 ,获得积分10
2分钟前
隐形曼青应助meng采纳,获得10
2分钟前
2分钟前
2分钟前
meng发布了新的文献求助10
2分钟前
meng完成签到,获得积分20
2分钟前
秋日思语发布了新的文献求助10
3分钟前
科研通AI2S应助ST采纳,获得10
3分钟前
双手外科结完成签到,获得积分10
3分钟前
米奇妙妙屋完成签到,获得积分10
3分钟前
3分钟前
4分钟前
ST发布了新的文献求助10
5分钟前
嘻嘻完成签到,获得积分10
5分钟前
休斯顿完成签到,获得积分10
5分钟前
风轻轻完成签到 ,获得积分10
6分钟前
雾见春完成签到 ,获得积分10
7分钟前
q792309106发布了新的文献求助10
7分钟前
冷cool完成签到 ,获得积分10
8分钟前
GGBond完成签到 ,获得积分10
8分钟前
秋日思语发布了新的文献求助10
9分钟前
晨晨完成签到 ,获得积分10
9分钟前
乐乐应助q792309106采纳,获得10
9分钟前
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211319
求助须知:如何正确求助?哪些是违规求助? 4387862
关于积分的说明 13663229
捐赠科研通 4247926
什么是DOI,文献DOI怎么找? 2330609
邀请新用户注册赠送积分活动 1328385
关于科研通互助平台的介绍 1281276