Digital twin-assisted dual transfer: a novel information-model adaptation method for rolling bearing fault diagnosis

计算机科学 断层(地质) 方位(导航) 学习迁移 过程(计算) 信息传递 对偶(语法数字) 适应(眼睛) 数据挖掘 人工智能 物理 光学 操作系统 艺术 电信 文学类 地震学 地质学
作者
Zixian Li,Xiaoxi Ding,Zhenzhen Song,Liming Wang,Bo Qin,Wenbin Huang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:: 102271-102271 被引量:14
标识
DOI:10.1016/j.inffus.2024.102271
摘要

Rolling bearing fault diagnosis is of great importance to the safety management of mechanical equipment. The scarcity of labelled fault data makes it difficult to adequately perform the training process of intelligent diagnosis models, and this will result in these intelligent models not being effectively and widely used in practice. Although some recent studies have verified that the addition of dynamic model response to the training process will greatly improve the ability of the model with low cost and high efficiency, it is still stuck in poor effect caused by large information distribution difference between dynamic model response and real measured data. Focusing on this issue, a digital twin-assisted dual transfer (DTa-DT) method with information and model adaptation was proposed for rolling bearing fault diagnosis. Different from the traditional digital-analogue driven transfer methods, the proposed DTa-DT aims to simultaneously synthesize data information transfer and feature model transfer together with domain transfer error minimization. In particular, it should be noted that the DTa-DT architecture consists of a dual transfer learning process, including digital twin-driven information transfer (DTd-IT) and digital-analogue-driven model transfer (DAd-MT), where the information is collaborated with the model to improve the integrated transfer diagnosis effect under sampling. On one aspect, with the employment of bearing dynamic model responses, DTd-IT is innovatively designed to establish the transfer of dynamic information and measured information. The information distribution difference between these twin data and real measured data is effetely adjusted with the introduced actual inference components, where the twin data with low information distribution difference can be well fusion generated by the information transfer digital twin (ITDT) model. On the other aspect, considering the truth that there are still small sample cases of real measured data and information distribution differences will affect the quality of the twin data, a digital-analogue driven model transfer (DAd-MT) method is further proposed, where the deep branch transfer network (DBTN) model with improved convolutional neural network (CNN) is used to achieve an accurate fault diagnosis effect with the help of digital twin data. Experiments and wear analysis verified that the proposed DTa-DT can significantly reduce the distribution difference between the dynamic model response and the real measured data, thus achieving low-cost and efficient rolling bearing transfer diagnosis compared to other ten state-of-the-art deep learning models. It can be predicted that the proposed dual transfer architecture provides more opportunities for the practical application of intelligent fault diagnosis under small sample sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
5秒前
FashionBoy应助唐喻菲采纳,获得10
6秒前
KK完成签到,获得积分10
7秒前
科研通AI5应助怡然的凌丝采纳,获得10
9秒前
动漫大师发布了新的文献求助30
9秒前
lucky发布了新的文献求助10
9秒前
LIU完成签到 ,获得积分10
10秒前
Acc完成签到,获得积分10
10秒前
keep完成签到,获得积分10
10秒前
Ash发布了新的文献求助10
11秒前
温暖砖头发布了新的文献求助10
11秒前
15秒前
平凡世界完成签到 ,获得积分10
15秒前
大超哥完成签到,获得积分10
17秒前
852应助吴某人采纳,获得10
19秒前
TEY完成签到 ,获得积分10
19秒前
TAA66发布了新的文献求助10
20秒前
21秒前
123完成签到,获得积分10
21秒前
我是老大应助kebing采纳,获得10
25秒前
温暖的怀蝶完成签到 ,获得积分10
27秒前
唐喻菲发布了新的文献求助10
28秒前
大模型应助lucky采纳,获得10
29秒前
ljh完成签到 ,获得积分10
31秒前
JamesPei应助动人的老黑采纳,获得10
31秒前
yinger1984完成签到,获得积分10
33秒前
小石头完成签到 ,获得积分10
34秒前
幸福果汁完成签到,获得积分10
34秒前
饱满一手完成签到 ,获得积分10
35秒前
SUKAZH完成签到,获得积分10
35秒前
简单的易云发布了新的文献求助100
36秒前
byron完成签到 ,获得积分10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779530
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220974
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522