Semantic and Structural View Fusion Modeling for Social Recommendation

计算机科学 情报检索 自然语言处理 人工智能 数据科学
作者
Kun Yuan,Guannan Liu,Junjie Wu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 11872-11884 被引量:14
标识
DOI:10.1109/tkde.2022.3230972
摘要

Existing studies have shown that user-item interaction data and social relation data can be jointly used for enhancing the performance of social recommendation. However, limited research has a focus on investigating how to deeply exploit different views of social interaction structures and rating behavior differences for further improving social recommendation. To this end, in this paper, we propose to integrate information from both semantic and structural views for social recommendation. Specifically, we first design a collective intelligence-based strategy to reveal high-quality implicit relations for both users and items. Then, by reformulating all available nodes and relations as a heterogeneous graph, we define multiple semantic metapaths to capture diverse preferences for comprehensive user and item representations. While various metapaths enlarge the representation capacity of users and items, they also introduce noise and irrelevant information. We recall that, for the user-item interaction graph, different structure sizes (e.g. local and global structures) provide diverse and complementary information for recommendation. Motivated by this, we propose a semantic and structural view fusion framework for social recommendation (S4Rec), which consists of a deep graph model and a wide attentive SVD (Singular Value Decomposition) model for rating prediction by taking the local and global structure as input and aggregating messages along the predefined metapaths. Finally, the two predicted results are adaptively fused to achieve the final both accurate and stable prediction. In addition, we treat the user's rating behavior difference as the relative position difference problem in the embedding space, and model it with TransH to improve the generalization ability of the main rating model. Extensive experiments on three open datasets demonstrate the superiority of our framework compared with state-of-the-art methods. Particularly, our model outperforms other baselines under different sparsity conditions, further validating the effectiveness on cold-start users. We release the source code at https://github.com/lcwy220/Social-Recommendation. IEEE
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助精明凡双采纳,获得10
刚刚
中级中级发布了新的文献求助10
刚刚
xiaoliuxiaoli完成签到,获得积分10
1秒前
3秒前
爆米花应助看起来不太强采纳,获得10
3秒前
3秒前
yuanfangyi0306完成签到,获得积分10
4秒前
lhy发布了新的文献求助10
4秒前
Ava应助ym采纳,获得10
4秒前
5秒前
Allen发布了新的文献求助10
5秒前
5秒前
安寒完成签到,获得积分10
7秒前
木目完成签到 ,获得积分10
7秒前
7秒前
yznfly应助呦呦又鹿采纳,获得20
7秒前
OYYYY完成签到,获得积分10
7秒前
8秒前
8秒前
852应助哎呀妈呀采纳,获得10
8秒前
8秒前
8秒前
水怪啊发布了新的文献求助10
9秒前
MZ完成签到,获得积分10
9秒前
浮游应助Raymond采纳,获得10
9秒前
10秒前
小啵招糕完成签到 ,获得积分10
10秒前
怡然远望发布了新的文献求助10
12秒前
windli发布了新的文献求助10
12秒前
12秒前
Orange应助尊敬的惠采纳,获得10
12秒前
共享精神应助Underwood111采纳,获得10
12秒前
12秒前
JamesPei应助整齐的冰珍采纳,获得10
13秒前
14秒前
14秒前
14秒前
Hello应助hbhbj采纳,获得10
14秒前
MZ发布了新的文献求助10
14秒前
落后紫夏完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5440451
求助须知:如何正确求助?哪些是违规求助? 4551338
关于积分的说明 14229698
捐赠科研通 4472493
什么是DOI,文献DOI怎么找? 2450787
邀请新用户注册赠送积分活动 1441867
关于科研通互助平台的介绍 1418094