内皮功能障碍
内分泌学
内科学
伊诺斯
氧化应激
过氧亚硝酸盐
脐静脉
脂肪因子
下调和上调
超氧化物
医学
药理学
糖基化终产物
瘦素
化学
受体
肥胖
一氧化氮
体外
生物化学
一氧化氮合酶
基因
酶
糖基化
作者
Qianqian Dong,Wenjuan Xing,Kaifeng Li,Xuanxuan Zhou,Siwang Wang,Haifeng Zhang
标识
DOI:10.1016/j.bcp.2021.114489
摘要
Hypertension in obesity has become a major threat for public health. Omentin-1, a novel adipokine, is down-regulated in obesity. Tetrahydroxystilbene glycoside (TSG) is the main ingredient extracted from Polygonum multiflorum Thunb (PMT), a traditional Chinese medicinal herb safely used for protecting cardiovascular systems over bimillennium. This study aims to examine (i) the impact of omentin-1 downregulation on obesity-related hypertension in murine models and the underlying mechanisms; (ii) whether tetrahydroxystilbene glycoside (TSG) improved endothelial dysfunction and obesity-associated hypertension via the increase of omentin-1. (TSG-treated) male Zucker diabetic fatty (ZDF) rats and omentin-1 knockout (OMT-/-) mice were used. In vitro, human umbilical vein endothelial cells (HUVECs) and mature adipocytes differentiated from human visceral preadipocyte (HPA-v) were maintained in a co-culture system. TSG was the main active component of PMT reducing systolic blood pressure and improving endothelial vasodilation. Fortnight-TSG treatment (100 mg/kg/day) increased serum omentin-1 level, also activated Akt/eNOS signaling and enhanced NO bioactivity; decreased expression of NOX2 and p22phox, suppressed production of superoxide and peroxynitrite anion. OMT-/- mice showed elevated blood pressure and impaired endothelial vasorelaxation, whereas hypotensive effect of TSG was blunted. In co-culture system, TSG incubation promoted binding of peroxisome proliferator-activated receptor-γ (PPAR-γ) and Itln-1 promoter in adipocytes, activated Akt/eNOS/NO signaling and attenuated oxidative/nitrative stress in HUVECs. Suppression of Itln-1 with siRNA significantly blocked the protective effect of TSG in vitro. Down-regulation of omentin-1 induces endothelial dysfunction and hypertension in obesity. TSG treatment (at least partially) increases omentin-1 via promoting binding of PPAR-γ and Itln-1 promoter in adipose tissues, subsequently exerts protective effects on endothelial function via activating Akt/eNOS/NO signaling and attenuating oxidative/nitrative stress. These results suggest that TSG could be developed as a promising anti-hypertension agent that protects against endothelial dysfunction and obesity-associated cardiovascular diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI