亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning hydrocracking reaction dynamics via neural ODEs: A data‐driven, gradient‐interpretable lumped modelling framework

颂歌 动力学(音乐) 计算机科学 生物系统 化学 数学 应用数学 物理 生物 声学
作者
Souvik Ta,S. Lakshminarayanan,Ajay K. Ray
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
标识
DOI:10.1002/cjce.70080
摘要

Abstract This study applies neural ordinary differential equations (neural ODEs) to model hydrocracking kinetics, a key process for converting heavy hydrocarbons into lighter products like gasoline and diesel. Neural ODEs provide a data‐driven approach, learning reaction dynamics directly from data without requiring explicit assumptions on kinetics, addressing limitations in traditional methods. Two neural ODE models were trained on synthetic hydrocracking data representing different kinetic assumptions: one based on a 2.5‐order reaction scheme (Model A) and the other on a first‐order scheme (Model B), across varying temperatures and feedstocks. The models demonstrated high predictive accuracy when predicting within the range of training data, with RMSE values remaining below 0.5 wt.% under most conditions. However, performance declined during high‐temperature extrapolation scenarios, particularly for the higher‐order model, revealing challenges in capturing nonlinear dynamics at extreme conditions. This work also enhanced the interpretability of neural ODEs by analyzing gradients within the model, which validated alignment with known kinetic principles, uncovering critical information about reaction pathways and temperature sensitivities. This analysis demonstrated the models' ability to capture temperature‐dependent behaviour and rate stabilization, as illustrated through heat maps, which further emphasized the potential of neural ODEs for both predictive accuracy and interpretative insights in hydrocracking modelling. Additionally, the extracted gradients present an exciting avenue for future advancements, such as leveraging symbolic regression techniques to uncover governing equations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vaseegara完成签到 ,获得积分10
3秒前
27秒前
35秒前
36秒前
39秒前
六六发布了新的文献求助10
42秒前
完美世界应助颠覆乾坤采纳,获得10
44秒前
舒适焦完成签到,获得积分10
54秒前
华仔应助科研通管家采纳,获得10
54秒前
54秒前
Ldq应助科研通管家采纳,获得10
54秒前
57秒前
舒适焦发布了新的文献求助10
1分钟前
Rory完成签到 ,获得积分10
1分钟前
1分钟前
斯文败类应助张贵虎采纳,获得10
1分钟前
1分钟前
HYQ发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
柯萝完成签到,获得积分10
1分钟前
张贵虎发布了新的文献求助10
1分钟前
1分钟前
安详的面包完成签到,获得积分20
1分钟前
1分钟前
田様应助张贵虎采纳,获得10
1分钟前
joeandrows留下了新的社区评论
1分钟前
精明凡双完成签到,获得积分10
1分钟前
2分钟前
汉堡包应助半夏采纳,获得10
2分钟前
2分钟前
颠覆乾坤发布了新的文献求助10
2分钟前
2分钟前
2分钟前
魔幻白羊发布了新的文献求助10
2分钟前
半夏发布了新的文献求助10
2分钟前
2分钟前
kk发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064209
求助须知:如何正确求助?哪些是违规求助? 4287442
关于积分的说明 13358985
捐赠科研通 4105809
什么是DOI,文献DOI怎么找? 2248265
邀请新用户注册赠送积分活动 1253799
关于科研通互助平台的介绍 1185079