Research on Machining Error Control Method Driven by Digital-twin Model of Dynamic Characteristics of Machining System

机械加工 机床 人工神经网络 计算机科学 数控 过程(计算) 机械工程 机制(生物学) 人工智能 工程类 认识论 操作系统 哲学
作者
Rongyi Li,Libo Zhao,Bo Zhou,Wenkai Zhao
出处
期刊:Integrated Ferroelectrics [Taylor & Francis]
卷期号:237 (1): 321-335 被引量:2
标识
DOI:10.1080/10584587.2023.2191519
摘要

AbstractThe position of each component structure in the machining space of the machining system directly affects the machining quality of the workpiece. In this paper, RBF neural network is used to study the spatial dynamic characteristics of the translational axes of five-axis CNC machine tools. It is the basis for building an evolvable knowledge base. Process evaluation, information feedback, and iterative optimization of thin-wall parts were carried out using digital-twin technology. Firstly, the model simulation of the translational machining space of a three-dimensional five-axis CNC machine tool is carried out by using the finite element method. The RBF neural network predicts the natural frequency of a translational machining space dynamic characteristics. It is further used to construct the dynamic characteristic spectrum of the translational space of CNC machine tools. Secondly, the machine tool flush space cutting process is built with a digital-twin system to optimize the iterative mechanism for machining process optimization. Finally, the method’s effectiveness was verified by experiments on milling thin-walled parts on a dual-turntable five-axis CNC machine and by contouring error measurement experiments. The results show that the average error of the optimized thin-wall contour is reduced by 26.9%. The iterative mechanism can continuously optimize the machining error and improve the machining accuracy. The iterative mechanism can continuously optimize the machining error and improve the machining accuracy.Keywords: Dynamic characteristicsdigital-twinRBF neural networkmachining errorprocess optimization Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe authors are grateful for financial support from the National Natural Science Foundation of China (No. 51905137) and Natural Science Foundation of Heilongjiang Province (No. LH2019E063).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qpp完成签到,获得积分10
刚刚
杨鑫6219完成签到,获得积分10
刚刚
活力的冬日关注了科研通微信公众号
1秒前
123完成签到,获得积分10
1秒前
健忘的哈密瓜完成签到,获得积分10
1秒前
1秒前
小乐子发布了新的文献求助10
2秒前
等你下课完成签到 ,获得积分10
2秒前
4秒前
1751587229发布了新的文献求助10
4秒前
佩琪发布了新的文献求助20
5秒前
穆亦擎发布了新的文献求助10
5秒前
Ava应助du采纳,获得10
6秒前
6秒前
zzj发布了新的文献求助10
6秒前
7秒前
Alexander L完成签到,获得积分10
7秒前
8秒前
8秒前
可爱的函函应助搞怪故事采纳,获得10
8秒前
8秒前
yanlibiu发布了新的文献求助10
9秒前
小鱼发布了新的文献求助10
9秒前
Yasong发布了新的文献求助10
10秒前
20011013发布了新的文献求助10
11秒前
ab发布了新的文献求助10
11秒前
航航航zzzz完成签到,获得积分10
11秒前
Lucas应助HIT_C采纳,获得30
12秒前
哈哈完成签到 ,获得积分10
12秒前
13秒前
思源应助Brady6采纳,获得10
13秒前
搜集达人应助111采纳,获得10
13秒前
13秒前
14秒前
labbiqq完成签到,获得积分10
14秒前
壮观问寒发布了新的文献求助10
14秒前
14秒前
无花果应助勤奋的7采纳,获得10
14秒前
FashionBoy应助梦中的奥特曼采纳,获得10
15秒前
炙热洪纲完成签到,获得积分20
15秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905842
求助须知:如何正确求助?哪些是违规求助? 3451393
关于积分的说明 10864520
捐赠科研通 3176753
什么是DOI,文献DOI怎么找? 1754991
邀请新用户注册赠送积分活动 848619
科研通“疑难数据库(出版商)”最低求助积分说明 791153